留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于QAR数据与关联规则的着陆阶段超限风险评估

汪磊 张楠 高杉

汪磊,张楠,高杉. 基于QAR数据与关联规则的着陆阶段超限风险评估[J]. 北京航空航天大学学报,2025,51(6):1907-1915 doi: 10.13700/j.bh.1001-5965.2023.0402
引用本文: 汪磊,张楠,高杉. 基于QAR数据与关联规则的着陆阶段超限风险评估[J]. 北京航空航天大学学报,2025,51(6):1907-1915 doi: 10.13700/j.bh.1001-5965.2023.0402
WANG L,ZHANG N,GAO S. Risk assessment of landing phase exceedance based on QAR data and association rule[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1907-1915 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0402
Citation: WANG L,ZHANG N,GAO S. Risk assessment of landing phase exceedance based on QAR data and association rule[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1907-1915 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0402

基于QAR数据与关联规则的着陆阶段超限风险评估

doi: 10.13700/j.bh.1001-5965.2023.0402
基金项目: 

中国民用航空局安全能力建设资金项目(KJZ49420210076)

详细信息
    通讯作者:

    E-mail:wanglei0564@hotmail.com

  • 中图分类号: V328.5

Risk assessment of landing phase exceedance based on QAR data and association rule

Funds: 

Safety Capacity Building Fund Project of Civil Aviation Administration of China (KJZ49420210076)

More Information
  • 摘要:

    飞行品质监控(FOQA)中对超限事件进行监测是识别飞行潜在风险的重要手段之一,但该方法对各超限事件之间的关联性研究不足,无法量化存在相互影响关系的超限风险。为此,提出一种基于快速存取记录器(QAR)数据与关联规则挖掘的着陆阶段超限风险评估方法。对9799个航段样本在进近着陆阶段发生各超限事件的频次进行统计,结合专家意见筛选出152~15 m下降率大、着陆坡度大、着陆速度大、着陆俯仰角小、15 m至接地距离远、着陆垂直载荷大6个着陆阶段风险评估指标;基于超限项目间关联性计算风险指标发生的可能性权重,依据风险指标的参数分布计算航班指标偏移量以评价超限风险的严重性,构建基于云模型的着陆超限风险评估模型。提取QAR数据应用该模型进行验证,结果显示风险评估结果具有区分度。所建模型为着陆阶段的超限风险评估提供了一种有效的方法,有利于飞行安全监管和飞行运行优化。

     

  • 图 1  基于关联规则的着陆超限风险评估建模过程

    Figure 1.  Modelling process for landing exceedance risk assessment based on association rule

    图 2  Apriori算法流程

    Figure 2.  Flow of Apriori algorithm

    图 3  指标分布

    Figure 3.  Distribution of indicators

    表  1  进近着陆阶段超限事件统计

    Table  1.   Statistics of exceedance incidents in landing phase

    超限事件 轻度超限阈值 轻度超限次数 严重超限阈值 严重超限次数 合计次数
    $ {A}_{1} $: GPWS警告 0 探测到 17 17
    $ {A}_{2} $: 610~305 m(20001000 ft)下降率大 >7.620 m/s 138 >9.144 m/s 26 164
    $ {A}_{3} $: 305~152 m(1000~500 ft)下降率大 >6.604 m/s 18 >7.620 m/s 3 21
    $ {E}_{1} $: 152~15 m(500~50 ft)下降率大 >5.588 m/s 414 >6.604 m/s 8 422
    $ {A}_{4} $: 152~61 m(500~200 ft)进近坡度大 >15° 1 >20° 0 1
    $ {A}_{5} $: 61~15 m(200~50 ft)进近坡度大 >8° 16 >10° 2 18
    $ {E}_{2} $: 着陆坡度大 >4° 696 >6° 23 719
    $ {A}_{6} $: 低空大速度 >118.22 m/s 89 >128.5 m/s 22 111
    $ {A}_{7} $: 152~15 m(500~50 ft)进近速度大 >(Vref+12.85) m/s 31 >(Vref+15.42) m/s 5 36
    $ {E}_{3} $: 着陆速度大 >(Vref+7.71) m/s 167 >(Vref+10.28) m/s 24 191
    $ {A}_{8} $: 放起落架晚 <457.5 m 5 <6.604 m/s 0 5
    $ {A}_{9} $: 着陆襟翼到位晚 <366 m 12 <5.08 m/s 2 14
    $ {A}_{10} $: 着陆俯仰角大 >7.4° 9 >7.3° 0 9
    $ {E}_{4} $: 着陆俯仰角小 <1° 132 <0.5° 32 164
    $ {A}_{11} $: 接地点近 <224 m 9 <2.52 m/s 0 9
    $ {E}_{5} $: 15 m(50 ft)至接地距离远 >762.5 m 5029 >15.24 m/s 403 5432
    $ {E}_{6} $: 着陆垂直载荷大 >1.68g 213 >1.89g 13 226
     注:g为重力加速度;Vref为着陆参考速度。
    下载: 导出CSV

    表  2  云模型特征参数计算

    Table  2.   Calculation of cloud model parameter characteristics

    特征参数 等级区间
    [0, x1] [x1, x2] [x2, x3] [x3, x4] [x4, 3]
    $ {E}_{{\mathrm{x}}} $ 0 $\dfrac{{{x_1} + {x_2}}}{2}$ $\dfrac{{{x_2} + {x_3}}}{2}$ $\dfrac{{{x_3} + {x_4}}}{2}$ 3
    $ {E}_{{\mathrm{n}}} $ $\dfrac{{{x_1} - 0}}{{2.355}}$ $\dfrac{{{x_2} - {x_1}}}{{2.355}}$ $\dfrac{{{x_3} - {x_2}}}{{2.355}}$ $\dfrac{{{x_4} - {x_3}}}{{2.355}}$ $\dfrac{{3 - {x_4}}}{{2.355}}$
    $ {H}_{{\mathrm{e}}} $ 0.001 0.001 0.001 0.001 0.001
    下载: 导出CSV

    表  3  超限监控项目间关联规则

    Table  3.   Association rules among exceedance events

    强关联规则支持度置信度提升度
    $ {A}_{7} $→$ {E}_{3} $0.0140.443.49
    $ {A}_{5} $→$ {E}_{1} $0.0100.563.05
    $ {A}_{1} $→$ {E}_{1} $0.0100.502.74
    $ {A}_{5} $→$ {E}_{2} $0.0140.782.63
    $ {E}_{3} $→$ {E}_{4} $0.0310.251.85
    $ {E}_{4} $→$ {E}_{3} $0.0310.231.85
    $ {A}_{2} $→$ {E}_{1} $0.0120.241.32
    $ {E}_{4} $→$ {E}_{5} $0.0780.581.01
    下载: 导出CSV

    表  4  风险指标可能性权重

    Table  4.   Weight of risk indicator probability

    指标 超限事件名称 可能性权值
    E1 152~15 m(500~50 ft)下降率大 0.1310
    E2 着陆坡度大 0.0480
    E3 着陆速度大 0.1143
    E4 着陆俯仰角小 0.1310
    E5 15 m(50 ft)至接地距离远 0.3294
    E6 着陆垂直载荷大 0.2463
    下载: 导出CSV

    表  5  风险指标严重度计算

    Table  5.   Calculation of risk indicator severity

    风险指标 样本参数名称 期望 标准差 严重度计算公式
    $ {E}_{1} $ 152~15 m(500~50 ft)下降率最大值 896.58 72.51 ${S_{\mathrm{E}}}(1) = ({{{\alpha _1} - 896.58}})/{{72.51}}$
    $ {E}_{3} $ 着陆阶段速度最大值 149.70 5.11 ${S_{\mathrm{E}}}(3) = ({{{\alpha _3} - 149.70}})/{{5.11}}$
    $ {E}_{4} $ 着陆最小俯仰角 2.70 0.76 ${S_{\mathrm{E}}}(4) = ({{2.70 - {\alpha _4}}})/{{0.76}}$
    $ {E}_{5} $ 15 m(50 ft)至接地距离 1371.45 211.62 ${S_{\mathrm{E}}}(5) = ({{{\alpha _5} - 1\;371.45}})/{{211.62}}$
    $ {E}_{6} $ 着陆垂直载荷最大值 1.3307 0.07 ${S_{\mathrm{E}}}(6) = ({{{\alpha _6} - 1.330\;7}})/{{0.07}}$
    下载: 导出CSV

    表  6  样本风险等级评估结果

    Table  6.   Results of samples risk level assessment

    样本序号 风险等级隶属度wi 风险等级
    轻微
    1 0.8396 0.1028 0.0221 0.0260 1.868$ \times $10-12 无风险
    2 0.4997 0.5038 0.0400 1.382×10−5 1.490×10-42 轻微风险
    3 0.6227 0.1325 0.2972 0.0079 1.226×10−21 无风险
    4 0.7004 0.0956 0.2384 0.0082 9.208×10−23 无风险
    5 0.4441 0.2136 0.3796 0.0142 5.881×10−20 无风险
    6 0.2933 0.3726 0.3908 0.0246 7.196×10−20 低风险
    7 0.8587 0.1539 0.0397 6.527×10−5 1.307×0−35 无风险
    8 0.6706 0.0597 0.3288 0.0237 5.462×10−20 无风险
    9 0.3805 0.4420 0.1412 0.0369 1.311×10−14 轻微风险
    10 0.7735 0.1346 0.0001 7.926×10−10 2.425×10−66 无风险
    下载: 导出CSV
  • [1] AIRBUS. A statistical analysis of commercial aviation accidents 1958-2022: X00D17008863[R]. Blagnac Cedex: AIRBUS, 2023: 27.
    [2] Boeing Commercial Airplanes. Statistical summary of commercial jet airplane accidents worldwide operations 1959-2021: 23072954[R]. Seattle: Boeing Commercial Airplanes, 2022: 10.
    [3] 中国民用航空局. 飞行品质监控(FOQA)实施与管理: AC-121/135-FS-2012-45R1[R]. 北京: 中国民用航空局飞行标准司, 2015: 21-25.

    Civil Aviation Administration of China. Flight quality assurance (FOQA) implementation and management: AC-121/135-FS-2012-45R1[R]. Beijing: Flight Standards Department of Civil Aviation Administration of China, 2015: 21-25(in Chinese).
    [4] WANG L, GAO S, HONG R Y, et al. Effects of age and flight exposure on flight safety performance: evidence from a large cross-sectional pilot sample[J]. Safety Science, 2023, 165: 106199. doi: 10.1016/j.ssci.2023.106199
    [5] AYRA E S, RÍOS INSUA D, CANO J. Bayesian network for managing runway overruns in aviation safety[J]. Journal of Aerospace Information Systems, 2019, 16(12): 546-558. doi: 10.2514/1.I010726
    [6] 孙瑞山, 陈雄, 梁妍. 基于高斯混合模型的飞机进近着陆阶段运行异常检测[J]. 安全与环境学报, 2022, 22(3): 1371-1376.

    SUN R S, CHEN X, LIANG Y. Abnormal operation detection for approach and landing phase based on Gaussian mixture model[J]. Journal of Safety and Environment, 2022, 22(3): 1371-1376(in Chinese).
    [7] 祁明亮, 邵雪焱, 池宏. QAR超限事件飞行操作风险诊断方法[J]. 北京航空航天大学学报, 2011, 37(10): 1207-1210.

    QI M L, SHAO X Y, CHI H. Flight operations risk diagnosis method on quick-access-record exceedance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(10): 1207-1210(in Chinese).
    [8] HADJIMICHAEL M, OSBORNE D M, ROSS D, et al. The flight operations risk assessment system[J]. SAE International, 1999: 150-156.
    [9] 汪磊, 孙瑞山, 吴昌旭, 等. 基于飞行QAR数据的重着陆风险定量评价模型[J]. 中国安全科学学报, 2014, 24(2): 88-92.

    WANG L, SUN R S, WU C X, et al. A flight QAR data based model for hard landing risk quantitative evaluation[J]. China Safety Science Journal, 2014, 24(2): 88-92(in Chinese).
    [10] 陈农田, 满永政, 李俊辉. 基于QAR数据的民机高高原进近着陆风险评估方法[J]. 北京航空航天大学学报, 2024, 50(1): 77-85.

    CHEN N T, MAN Y Z, LI J H. Risk assessment method for civil aircraft approach and landing at high plateau based on QAR data [J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 77-85(in Chinese).
    [11] 汪磊, 郭世广, 任勇. 基于飞行数据正态云的着陆操作风险评价方法[J]. 安全与环境学报, 2019, 19(5): 1555-1561.

    WANG L, GUO S G, REN Y. Landing operation risk evaluation based on the normal cloud of the flight data[J]. Journal of Safety and Environment, 2019, 19(5): 1555-1561(in Chinese).
    [12] 汪磊, 高杉, 张静怡, 等. 民航飞行员超限行为评价方法研究[J]. 安全与环境学报, 2021, 21(2): 695-700.

    WANG L, GAO S, ZHANG J Y, et al. Of the airline transport pilots based on the QAR data Evaluation of the exceedance behaviors[J]. Journal of Safety and Environment, 2021, 21(2): 695-700(in Chinese).
    [13] WANG L, REN Y, WU C X. Effects of flare operation on landing safety: a study based on ANOVA of real flight data[J]. Safety Science, 2018, 102: 14-25. doi: 10.1016/j.ssci.2017.09.027
    [14] 谢嘉仪. 基于QAR飞行大数据的不稳定进近风险分析与预警技术研究[D]. 武汉: 武汉大学, 2021: 14-17.

    XIE J Y. Research on unstable approach risk analysis and early warning technology based on QAR flight big data[D]. Wuhan: Wuhan University, 2021: 14-17(in Chinese).
    [15] MONTELLA A. Identifying crash contributory factors at urban round abouts and using association rules to explore their relationships to different crash types[J]. Accident Analysis & Prevention, 2011, 43(4): 1451-1463.
    [16] LI L, GUO H M, CHENG L H, et al. Research on causes of coal mine gas explosion accidents based on association rule[J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104879. doi: 10.1016/j.jlp.2022.104879
    [17] LAN H, MA X X, MA L H, et al. Pattern investigation of total loss maritime accidents based on association rule mining[J]. Reliability Engineering & System Safety, 2023, 229: 108893.
    [18] 时统宇, 王岩韬, 李鸿坤. 基于先验频繁模式算法的航班延误关联规则挖掘[J]. 飞行力学, 2023, 41(2): 87-94.

    SHI T Y, WANG Y T, LI H K. Flight delay association rules mining based on Apriori algorithm[J]. Flight Dynamics, 2023, 41(2): 87-94(in Chinese).
    [19] 袁乐平, 张文东, 赵力梵, 等. 基于TEM模型的民航不安全事件关联规则挖掘与分析[J]. 中国安全生产科学技术, 2022, 18(10): 31-36.

    YUAN L P, ZHANG W D, ZHAO L F, et al. Mining and analysis of association rules in civil aviation unsafe incidents based on TEM model[J]. Journal of Safety Science and Technology, 2022, 18(10): 31-36(in Chinese).
    [20] 王明涛. 证券投资风险本质属性探讨及其计量模型研究[J]. 河南金融管理干部学院学报, 2003, 21(4): 61-63.

    WANG M T. An inquiry into essential attributes of securities investment risks and its quantitative pattern research[J]. Journal of Henan College of Financial Management Cadres, 2003, 21(4): 61-63(in Chinese).
    [21] AGRAWAL R, IMIELIŃSKI T, SWAMI A. Mining association rules between sets of items in large databases[J]. ACM SIGMOD Record, 1993, 22(2): 207-216. doi: 10.1145/170036.170072
    [22] 毕建欣, 张岐山. 关联规则挖掘算法综述[J]. 中国工程科学, 2005, 7(4): 88-94. doi: 10.3969/j.issn.1009-1742.2005.04.016

    BI J X, ZHANG Q S. Survey of the algorithms on association rule mining[J]. Strategic Study of CAE, 2005, 7(4): 88-94(in Chinese). doi: 10.3969/j.issn.1009-1742.2005.04.016
    [23] 蔡伟杰, 张晓辉, 朱建秋, 等. 关联规则挖掘综述[J]. 计算机工程, 2001, 27(5): 31-33. doi: 10.3969/j.issn.1000-3428.2001.05.014

    CAI W J, ZHANG X H, ZHU J Q, et al. Survey of association rule generation[J]. Computer Engineering, 2001, 27(5): 31-33(in Chinese). doi: 10.3969/j.issn.1000-3428.2001.05.014
    [24] BRIN S, PAGE L. The anatomy of a large-scale hypertextual web search engine[J]. Computer networks and ISDN systems, 1998, 30(1-7): 107-117.
    [25] 李德毅, 杜鹢. 不确定性人工智能[M]. 2版. 北京: 国防工业出版社, 2014: 42-43.

    LI D Y, DU Y. Artificial intelligence with uncertainty[M]. 2nd ed. Beijing: National Defense Industry Press, 2014: 42-43(in Chinese).
    [26] 叶琼, 李绍稳, 张友华, 等. 云模型及应用综述[J]. 计算机工程与设计, 2011, 32(12): 4198-4201.

    YE Q, LI S W, ZHANG Y H, et al. Cloud model and application overview[J]. Computer Engineering and Design, 2011, 32(12): 4198-4201(in Chinese).
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  2
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 录用日期:  2023-09-08
  • 网络出版日期:  2024-06-18
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答