留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

µHT-1推力器工作参数宽范围调节下束流特性实验研究

黄丹 龙建飞 成烨 王嘉彬 徐禄祥 杨威

黄丹,龙建飞,成烨,等. µHT-1推力器工作参数宽范围调节下束流特性实验研究[J]. 北京航空航天大学学报,2025,51(6):2119-2128 doi: 10.13700/j.bh.1001-5965.2023.0406
引用本文: 黄丹,龙建飞,成烨,等. µHT-1推力器工作参数宽范围调节下束流特性实验研究[J]. 北京航空航天大学学报,2025,51(6):2119-2128 doi: 10.13700/j.bh.1001-5965.2023.0406
HUANG D,LONG J F,CHENG Y,et al. Experimental study on beam characteristics of µHT-1 thruster under wide range adjustment of operating parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2119-2128 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0406
Citation: HUANG D,LONG J F,CHENG Y,et al. Experimental study on beam characteristics of µHT-1 thruster under wide range adjustment of operating parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):2119-2128 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0406

µHT-1推力器工作参数宽范围调节下束流特性实验研究

doi: 10.13700/j.bh.1001-5965.2023.0406
基金项目: 

国家重点研发计划(2021YFC2202700); 湖南省自然科学基金(2021JJ30564); 湖南省教育厅重点项目(19A440); 重庆市教委科学技术研项目(KJZD-K202101506); 国科大杭州高等研究院自主项目(2022ZZ01009)

详细信息
    通讯作者:

    E-mail:ljf510@163.com

  • 中图分类号: V439.4

Experimental study on beam characteristics of µHT-1 thruster under wide range adjustment of operating parameters

Funds: 

National Key R&D Program of China (2021YFC2202700); Natural Science Foundation of Hunan Province (2021JJ30564); Key Project of Hunan Provincial Department of Education (19A440); Science and Technology Research Project of Chongqing Municipal Education Commission (KJZD-K202101506); Independent Project of Hangzhou Institute of Advanced Studies, National University of Science and Technology (2022ZZ01009)

More Information
  • 摘要:

    面向空间引力波探测任务需求,设计了瓦级微功率霍尔推力器µHT-1,并对该推力器的束流特性进行实验研究。采用法拉第探针结合三维移动机构进行诊断,获取阳极电压700~1 200 V、阳极工质流量0.1~0.5 sccm宽范围工况下束流离子电流密度分布,并进一步分析总束流值、阳极电流、电流利用率、发散角等参数变化趋势。测试结果表明:µHT-1推力器可在宽范围工况下稳定工作,束流呈现出较好的轴对称分布特性;离子电流密度沿轴向逐渐减小,沿径向双极扩散;阳极电压和阳极工质流量分别通过影响电子平均温度和通道中性原子密度分布的方式,使得电流利用率与发散角呈现出增长的趋势;推力器总束流与阳极工质流量、阳极电压均呈现线性增长特性。

     

  • 图 1  µHT-1推力器工作原理及氪工质点火状态

    Figure 1.  The ignition state of krypton gas of uHT-1 thruster

    图 2  CS-1600微牛级电推进实验平台

    Figure 2.  The CS-1600 micro Hall electric propulsion experimental platform

    图 3  等离子体诊断系统连接示意图及实物

    Figure 3.  The schematic diagram of the connection of the plasma diagnostic system and the physical object

    图 4  法拉第筒示意图

    Figure 4.  Schematic of Faraday cup

    图 5  束流离子电流密度分布随轴向距离变化

    Figure 5.  The variation curves of ion current density under different axial distances

    图 6  离子电流密度分布随阳极电压变化

    Figure 6.  The variation curves of ion current density under different anode voltage

    图 7  不同阳极电压下束流和阳极电流变化关系

    Figure 7.  The curves of anode current and total ion beam current under anode voltage

    图 8  不同阳极电压下电流利用率和束流发散角变化关系

    Figure 8.  The curves of beam divergence angle and current utilization efficiency under anode voltage

    图 9  离子电流密度分布随阳极工质流量变化

    Figure 9.  The variation curves of ion current density under different krypton work flow

    图 10  不同阳极工质流量下总束流和阳极电流变化关系

    Figure 10.  The curves of anode current and total ion beam current under krypton work flow

    图 11  不同阳极工质流量下电流利用率和发散角变化

    Figure 11.  The curves of beam divergence angle and current utilization efficiency under krypton work flow

  • [1] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102
    [2] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测“太极计划” 及“太极1号” 在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10.

    LUO Z R, ZHANG M, JIN G, et al. Introduction of Chinese space-borne gravitational wave detection program“taiji” and “taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10 (in Chinese).
    [3] 涂良成. 天琴计划的回顾与小结[J]. 中山大学学报(自然科学版), 2021, 60(增刊1): 253.

    TU L C. Review and summary of Tianqin Project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(Sup 1): 253 (in Chinese).
    [4] 胡越欣, 张立华, 高永, 等. 空间引力波探测航天器关键技术分析[J]. 航天器工程, 2022, 31(4): 1-7. doi: 10.3969/j.issn.1673-8748.2022.04.001

    HU Y X, ZHANG L H, GAO Y, et al. Analysis of key technologies of spacecraft for gravitational waves detection in space[J]. Spacecraft Engineering, 2022, 31(4): 1-7 (in Chinese). doi: 10.3969/j.issn.1673-8748.2022.04.001
    [5] 祝竺, 赵艳彬, 尤超蓝, 等. 面向空间引力波探测的非接触式卫星平台无拖曳控制技术[J]. 南京航空航天大学学报, 2022, 54(增刊1): 9-13.

    ZHU Z, ZHAO Y B, YOU C L, et al. Drag-free control technology of non-contact satellite platform for space gravitational wave detection[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(Sup 1): 9-13 (in Chinese).
    [6] 于达仁, 崔凯, 刘辉, 等. 用于引力波探测的微牛级霍尔电推进技术[J]. 哈尔滨工业大学学报, 2020, 52(6): 171-181. doi: 10.11918/201911131

    YU D R, CUI K, LIU H, et al. Micro-Newton hall electric propulsion technology for gravitational wave detection[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 171-181 (in Chinese). doi: 10.11918/201911131
    [7] 于达仁, 牛翔, 王泰卜, 等. 面向空间引力波探测任务的微推进技术研究进展[J]. 中山大学学报(自然科学版), 2021, 60(增刊1): 194-212.

    YU D R, NIU X, WANG T B, et al. The developments of micro propulsion technology based on space gravitational wave detection task[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(Sup 1): 194-212 (in Chinese).
    [8] ZIEMER J, MARRESE-READING C, DUNN C, et al. Colloid microthruster flight performance results from space technology 7 disturbance reduction system[C]//Proceedings of International Electric Propulsion Conference. Reston: AIAA, 2017.
    [9] LEITER H, LOTZ B, FEILI D, et al. Design development and test of the RIT-ÁX mini ion engine system[C]//Proceedings of the 31st International Electric Propulsion Conference. Michigan: IEPC, 2009: 179.
    [10] 李永, 刘旭辉, 汪旭东, 等. 空间极小推力宽范围可调推进技术研究进展[J]. 空间控制技术与应用, 2019, 45(6): 1-12,19. doi: 10.3969/j.issn.1674-1579.2019.06.001

    LI Y, LIU X H, WANG X D, et al. Review and prospect on the large-range thrust throttling technology with extremely small thrust[J]. Aerospace Control and Application, 2019, 45(6): 1-12,19 (in Chinese). doi: 10.3969/j.issn.1674-1579.2019.06.001
    [11] AMARO-SEOANE P, AUDLEY H, BABAK S, et al. Laser interferometer space antenna[EB/OL]. (2017-02-01) [2013-05-28]. https://arxiv.org/abs/1702.00786, 2017.
    [12] HEY F G. Micro Newton thruster development[M]. Wiesbaden: Springer Fachmedien Wiesbaden, 2018.
    [13] XU S Y, XU L X, CONG L X, et al. First result of orbit verification of Taiji-1 hall micro thruster[J]. International Journal of Modern Physics A, 2021, 36: 2140013-21400S9. doi: 10.1142/S0217751X21400133
    [14] POTRIVITU G C, SUN Y F, BIN ROHAIZAT M W A, et al. A review of low-power electric propulsion research at the space propulsion centre Singapore[J]. Aerospace, 2020, 7(6): 67. doi: 10.3390/aerospace7060067
    [15] 杭观荣, 李诗凝, 康小录, 等. 霍尔电推进空间应用现状及未来展望[J]. 推进技术, 2023, 44(6): 38-51.

    HANG G R, LI S N, KANG X L, et al. Current space application status and future prospect of Hall electric propulsion[J]. Journal of Propulsion Technology, 2023, 44(6): 38-51 (in Chinese).
    [16] MIKELLIDES I G, KATZ I, GOEBEL D M, et al. Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region[J]. Journal of Applied Physics, 2005, 98(11): 113303.1-113303.14.
    [17] HOFER R R, GOEBEL D M, MIKELLIDES I G, et al. Magnetic shielding of a laboratory Hall thruster. II. Experiments[J]. Journal of Applied Physics, 2014, 115(4): 043304.
    [18] 朱悉铭, 宁中喜, 于达仁. HEP-70 霍尔推力器的发射光谱诊断研究[C]//第十八届全国等离子体科学技术会议摘要集. 合肥: 中国科学技术大学出版社, 2017: 240.

    ZHU X M, NING Z X, YU D R. Emission spectroscopy diagnostics of HEP-70 Hall thruster [C]//Proceedings of the 18th National Conference on Plasma Science and Technology. Hefei: University of Science and Technology of China Press, 2017: 240(in Chinese).
    [19] 陈新伟, 高俊, 顾左, 等. 变工况下自励磁模式 LHT-60 霍尔推力器放电特性试验研究[J]. 真空与低温, 2022, 28(1): 106-114(in Chinese). doi: 10.3969/j.issn.1006-7086.2022.01.013

    CHEN X W, GAO J, GU Z, et al. Experimental study on discharge characteristics of self-field mode LHT-60 Hall thruster under variable operating conditions[J]. Vacuum and Cryogenics, 2022, 28(1): 106-114. doi: 10.3969/j.issn.1006-7086.2022.01.013
    [20] LU S X, LUO W, LONG J F, et al. Numerical simulation optimization of neutral flow dynamics in low-power Hall thruster[J]. Results in Physics, 2023, 46: 106268. doi: 10.1016/j.rinp.2023.106268
    [21] 罗威, 龙建飞, 徐禄祥, 等. 霍尔推力器放电通道中性气体分布及检测技术研究进展[J]. 固体火箭技术, 2023, 46(1): 158-166. doi: 10.7673/j.issn.1006-2793.2023.01.019

    LUO W, LONG J F, XU L X, et al. Research progress of distribution and detection technology neutral gas in Hall thruster discharge channel[J]. Journal of Solid Rocket Technology, 2023, 46(1): 158-166 (in Chinese). doi: 10.7673/j.issn.1006-2793.2023.01.019
    [22] 龙建飞, 徐禄祥, 吴铭钐, 等. 一种霍尔推力器供气管路的气路分压绝缘方法及其应用: 中国, CN114458565B[P]. 2022-07-12.

    LONG J F, XU L X, WU M S, et al. A method of gas circuit pressure divider insulation for Hall thruster supply line and its application: China, CN114458565B[P]. 2022-07-12(in Chinese).
    [23] 龙建飞, 徐禄祥, 吴铭钐, 等. 一种霍尔推力器环式分压气路绝缘结构: 中国, CN114458564B[P]. 2022-07-12.

    LONG J F, XU L X, WU M S, et al. An annular voltage-division gas path insulation structure for Hall thruster: China, CN114458564B [P]. 2022-07-12(in Chinese).
    [24] 宁中喜. 霍尔推力器羽流发散角的定向探针测量方法[J]. 推进技术, 2011, 32(6): 895-899.

    NING Z X. Directional probe measurement of plume divergence angle in Hall thrusters[J]. Journal of Propulsion Technology, 2011, 32(6): 895-899 (in Chinese).
    [25] 龙建飞, 张天平, 吴辰宸, 等. LIPS-200离子推力器放电室出口离子密度分布研究[J]. 推进技术, 2018, 39(5): 1194-1200.

    LONG J F, ZHANG T P, WU C C, et al. Study on ion density distribution in discharge chamber exit of LIPS-200 ion thruster[J]. Journal of Propulsion Technology, 2018, 39(5): 1194-1200 (in Chinese).
    [26] 刘星宇, 李鸿, 毛威, 等. 霍尔推力器能量损失系统性评价方法[J]. 推进技术, 2022, 43(7): 470-480.

    LIU X Y, LI H, MAO W, et al. Systematic evaluation method for power loss of Hall thruster[J]. Journal of Propulsion Technology, 2022, 43(7): 470-480 (in Chinese).
    [27] 商圣飞, 顾左, 贺碧蛟, 等. 离子推力器束流密度分布模型[J]. 真空科学与技术学报, 2015, 35(12): 1414-1419.

    SHANG S F, GU Z, HE B J, et al. Modelling of ion beam current density of ion thruster[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(12): 1414-1419 (in Chinese).
    [28] 卿绍伟, 鄂鹏, 段萍. 壁面二次电子发射对霍尔推力器放电通道绝缘壁面双鞘特性的影响[J]. 物理学报, 2013, 62(5): 279-286. doi: 10.7498/aps.62.055202

    QING S W, E P, DUAN P. Effect of wall secondary electron emission on the characteristics of double sheath near the dielectric wall in Hall thruster[J]. Acta Physica Sinica, 2013, 62(5): 279-286 (in Chinese). doi: 10.7498/aps.62.055202
    [29] 杨三祥, 王倩楠, 高俊, 等. 径向磁场对霍尔推力器性能影响的数值模拟研究[J]. 物理学报, 2022, 71(10): 347-355.

    YANG S X, WANG Q N, GAO J, et al. Numerical study of the effect of radial magnetic field on performance of Hall thruster[J]. Acta Physica Sinica, 2022, 71(10): 347-355 (in Chinese).
  • 加载中
图(11)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  40
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 录用日期:  2023-10-13
  • 网络出版日期:  2024-01-05
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答