留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于功率损失特性分析的特种车辆传动性能研究进展

高钦和 高蕾 刘志浩 王冬 马栋 章一博

高钦和,高蕾,刘志浩,等. 基于功率损失特性分析的特种车辆传动性能研究进展[J]. 北京航空航天大学学报,2025,51(6):1824-1842 doi: 10.13700/j.bh.1001-5965.2023.0413
引用本文: 高钦和,高蕾,刘志浩,等. 基于功率损失特性分析的特种车辆传动性能研究进展[J]. 北京航空航天大学学报,2025,51(6):1824-1842 doi: 10.13700/j.bh.1001-5965.2023.0413
GAO Q H,GAO L,LIU Z H,et al. Research progress on transmission performance of special vehicle based on power loss characteristics analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1824-1842 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0413
Citation: GAO Q H,GAO L,LIU Z H,et al. Research progress on transmission performance of special vehicle based on power loss characteristics analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(6):1824-1842 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0413

基于功率损失特性分析的特种车辆传动性能研究进展

doi: 10.13700/j.bh.1001-5965.2023.0413
基金项目: 

国家自然科学基金(51905541);陕西省自然科学基础研究计划(2020JQ487);陕西省高校科协青年人才托举计划(20190412)

详细信息
    通讯作者:

    E-mail:lycoris_lei@163.com

  • 中图分类号: U463.21;TJ812;TH132.4

Research progress on transmission performance of special vehicle based on power loss characteristics analysis

Funds: 

National Natural Science Foundation of China (51905541); Natural Science Basic Research Program of Shaanxi (2020JQ487);Young Talent Fund of University Association for Science and Technology in Shaanxi, China (20190412)

More Information
  • 摘要:

    车辆传动系统是发动机与车轮负载之间的动力传递装置,作为动力系统、行走系统、制动系统的连接枢纽,保证特种设备在作战任务中的机动性与安全性。基于此,从传动系统结构组成特性、动力传递特性、能量流特性与整车动力特性4个方面论证了传动效率是评估传动系统性能的重要技术指标;在分析功率损失与传动效率关系的基础上,从产生机理与结构特性角度搭建了传动系统功率损失全局模型框架,为传动系统性能表征提供了理论依据;从传动效率的理论数值研究、建模仿真研究和试验论证研究3个方面论述了车辆传动系统功率损失的研究难点与重点,指出大型机械设备在复杂运行工况下的多介质、多参数耦合仿真分析与试验研究可为实现车辆传动部件的性能优化与健康管理、传动系统的性能评估与匹配设计提供指导思路;指出多因素下的综合传动效率分析,以及基于智能算法的功率损失特性、效率特性、性能退化特性耦合研究,对大型机械设备性能监测与评估具有实际工程意义。

     

  • 图 1  特种车辆传动系统层级划分

    Figure 1.  Hierarchical division of special vehicle transmission system

    图 2  特种车辆动力传递示意图

    Figure 2.  Power transmission of special vehicles

    图 3  特种车辆传动系统能量流特性[5]

    Figure 3.  Energy flow characteristics of special vehicle transmission system[5]

    图 4  传动系统功率损失组成成分

    Figure 4.  Transmission system power loss composition

    图 5  齿轮箱功率损失组成[36-37]

    Figure 5.  Gearbox power loss composition[36-37]

    图 6  传动系统功率损失全局模型框架

    Figure 6.  Global power loss model framework of transmission system

    图 7  变速器不同挡位动力传递示意图[38]

    Figure 7.  Schematic diagram of power flow in transmission gear position[38]

    图 8  某型号直齿轮法向载荷分布状态[8]

    Figure 8.  Normal load distribution of a certain type of spur gear[8]

    图 9  齿轮承载接触区域分布示意图[8]

    Figure 9.  Schematic diagram of bearing contact area of gear[8]

    图 10  斜齿轮承载接触应力云图[66]

    Figure 10.  Load contact stress nephogram of helical gear[66]

    图 11  齿轮传动部件搅油流态CFD仿真[6]

    Figure 11.  CFD simulation of stirred flow state of gear transmission parts[6]

    图 12  齿轮传动部件温度-功率损失耦合机理

    Figure 12.  Coupling mechanism of temperature-power loss of gear transmission components

    图 13  变速器稳态温度分布云图[100]

    Figure 13.  Transmission steady state temperature distribution cloud[100]

    图 14  某型号变速器RomaxDesigner仿真模型[102]

    Figure 14.  RomaxDesigner simulation model of a certain type of transmission[102]

    图 15  行星齿轮减速器Modelica负载损耗模型[108]

    Figure 15.  Planetary gear reducer Modelica load loss model[108]

    图 16  闭式传动系统试验台架[34,119]

    Figure 16.  Closed-loop transmission system test bench[34,119]

    图 17  FZG齿轮箱试验台[127]

    Figure 17.  FZG gearbox test bed[127]

    图 18  轴承摩擦力矩损失试验台[11]

    Figure 18.  Bearing friction torque loss test bench[11]

    图 19  大型齿轮箱功率损失多参数试验台架[61]

    Figure 19.  Large gearbox power loss multi-parameter test bench[61]

  • [1] 余志生. 汽车理论[M]. 5版. 北京: 机械工业出版社, 2009: 35-36.

    YU Z S. Automobile theory[M]. 5th ed. Beijing: China Machine Press, 2009: 35-36(in Chinese).
    [2] 张鹏程. 液力机械式自动变速器传动效率与整车燃油经济性研究[D]. 太原: 中北大学, 2017: 2-3.

    ZHANG P C. Study on transmission efficiency of hydromechanical automatic transmission and fuel economy of vehicle[D]. Taiyuan: North University of China, 2017: 2-3(in Chinese).
    [3] 崔志琴, 王晓华, 景银萍, 等. 装甲车辆底盘构造与原理[M]. 北京: 北京理工大学出版社, 2022: 20-21.

    CUI Z Q, WANG X H, JING Y P, et al. Structure and principle of armored vehicle’s chassis[M]. Beijing: Beijing Insititute of Technology Press, 2022: 20-21(in Chinese).
    [4] 彭莫, 周良生, 岳惊涛, 等. 多轴汽车[M]. 北京: 机械工业出版社, 2014: 25-26.

    PENG M, ZHOU L S, YUE J T, et al. Multi-axlecar[M]. Beijing: China Machine Press, 2014: 25-26(in Chinese).
    [5] 何平. 重型汽车传动系统关键部件能量特性及节能评价研究[D]. 合肥: 合肥工业大学, 2015: 13-14.

    HE P. Study on energy characteristics and energy-saving evaluation of key components of heavy-duty vehicle transmission system[D]. Hefei: Hefei University of Technology, 2015: 13-14(in Chinese).
    [6] 王斌, 宁斌, 陈辛波, 等. 齿轮传动搅油功率损失的研究进展[J]. 机械工程学报, 2020, 56(23): 1-20. doi: 10.3901/JME.2020.23.001

    WANG B, NING B, CHEN X B, et al. Research progress in churning losses of gear transmission[J]. Journal of Mechanical Engineering, 2020, 56(23): 1-20(in Chinese). doi: 10.3901/JME.2020.23.001
    [7] 张林, 周建星, 章翔峰, 等. 风电齿轮传动系统弹流润滑特性研究[J]. 太阳能学报, 2022, 43(7): 385-394.

    ZHANG L, ZHOU J X, ZHANG X F, et al. Research on elastohydrodynamic lubrication characteristics of gear transmission system in wind turbine[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 385-394(in Chinese).
    [8] LIU M Y, HAN X G, YAN C N, et al. Tribological characteristics evaluation of a helical gear pair based on the tribo-dynamic model[J]. Lubrication Science, 2023, 35(8): 616-635. doi: 10.1002/ls.1671
    [9] 蒋进科, 刘钊, 刘红梅. Ease-off修形准双曲面齿轮齿面动态抗磨设计与分析[J]. 机械工程学报, 2021, 57(19): 155-164. doi: 10.3901/JME.2021.19.015

    JIANG J K, LIU Z, LIU H M. Dynamic anti-wear design and analysis for hypoid gears with Ease-off flank modification[J]. Journal of Mechanical Engineering, 2021, 57(19): 155-164(in Chinese). doi: 10.3901/JME.2021.19.015
    [10] ZHAO J, SHENG W, LI Z, et al. Study on the lubrication characteristics of spur gear pairs with low sliding ratio under mixed elastohydrodynamic lubrication[J]. Journal of Tribology, 2022, 144(7): 071604. doi: 10.1115/1.4052939
    [11] PETERSON W, RUSSELL T, SADEGHI F, et al. Experimental and analytical investigation of fluid drag losses in rolling element bearings[J]. Tribology International, 2021, 161: 107106. doi: 10.1016/j.triboint.2021.107106
    [12] FARRENKOPF F, SCHWARZ A, LOHNER T, et al. Analysis of a low-loss gear geometry using a thermal elastohydrodynamic simulation including mixed lubrication[J]. Lubricants, 2022, 10(9): 200. doi: 10.3390/lubricants10090200
    [13] 蒋进科, 方宗德, 刘红梅. 行星传动多体齿轮承载接触特性分析[J]. 机械工程学报, 2019, 55(15): 174-182. doi: 10.3901/JME.2019.15.174

    JIANG J K, FANG Z D, LIU H M. Loadedtooth contact characteristic analysis of multi-gear for planetary transmission[J]. Journal of Mechanical Engineering, 2019, 55(15): 174-182(in Chinese). doi: 10.3901/JME.2019.15.174
    [14] LIANG Y C, WANG S, LI W D, et al. Data-driven anomaly diagnosis for machining processes[J]. Engineering, 2019, 5(4): 646-652. doi: 10.1016/j.eng.2019.03.012
    [15] 王秋莲, 周啸宇, 黎敏, 等. 基于递归分析和机器学习的小批量机械加工过程状态监测[J]. 计算机集成制造系统, 2024, 30(12): 4339-4351.

    WANG Q L, ZHOU X Y, LI M, et al. State monitoring of machining process in small batch production mode based on recurrence analysis and machine learning[J]. Computer Integrated Manufacturing Systems, 2024, 30(12): 4339-4351(in Chinese).
    [16] WANG Q L, YANG H. Sensor-based recurrence analysis of energy efficiency in machining processes[J]. IEEE Access, 2020, 8: 18326-18336. doi: 10.1109/ACCESS.2020.2968172
    [17] 肖海兵. 基于能量耗损的机械设备故障诊断理论与方法研究[D]. 广州: 华南理工大学, 2013: 16-17.

    XIAO H B. Research on theory and method of mechanical equipment fault diagnosis based on energy consumption[D]. Guangzhou: South China University of Technology, 2013: 16-17(in Chinese).
    [18] 谢小鹏, 肖海兵, 冯伟, 等. 基于局部线性嵌入的能量耗损故障模式识别[J]. 华南理工大学学报(自然科学版), 2012, 40(12): 1-6.

    XIE X P, XIAO H B, FENG W, et al. Fault pattern recognition of energy loss based on locally linear embedding[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(12): 1-6(in Chinese).
    [19] GU Y J, XING Y. Online monitoring of wind turbine operation efficiency and optimization based on benchmark values[J]. IEEE Access, 2019, 7: 132193-132204. doi: 10.1109/ACCESS.2019.2940815
    [20] DING H, LI H P, CHEN S Y, et al. Energy loss and mechanical efficiency forecasting model for aero-engine bevel gear power transmission[J]. International Journal of Mechanical Sciences, 2022, 231: 107569. doi: 10.1016/j.ijmecsci.2022.107569
    [21] 周良生, 曲学春, 周冬生, 等. 汽车动力传动系及动力性能计算[M]. 北京: 机械工业出版社, 2020: 15-16.

    ZHOU L S, QU X C, ZHOU D S, et al. Automobile power train and dynamic performance calculation[M]. Beijing: China Machine Press, 2020: 15-16(in Chinese).
    [22] 华琛, 牛润新, 余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244.

    HUA C, NIU R X, YU B. Methods and applications of ground vehicle mobility evaluation[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(6): 1229-1244(in Chinese).
    [23] 张金豹, 邹天刚, 高秀才, 等. 基于中位秩加权的车辆传动装置直驶模式传递效率性能评估[J]. 兵工学报, 2022, 43(增刊1): 54-59.

    ZHANG J B, ZOU T G, GAO X C, et al. Straight driving efficiency assessment of vehicle transmission device based on themedian-rank weighting[J]. Acta Armamentarii, 2022, 43(Sup 1): 54-59(in Chinese).
    [24] DONG P, ZHAO J W, XU X Y, et al. Performance comparison of series-parallel hybrid transmissions with multiple gears and modes based on efficiency model[J]. Energy Conversion and Management, 2022, 274: 116442. doi: 10.1016/j.enconman.2022.116442
    [25] LEI F, BAI Y C, ZHU W H, et al. A novel approach for electric powertrain optimization considering vehicle power performance, energy consumption and ride comfort[J]. Energy, 2019, 167: 1040-1050. doi: 10.1016/j.energy.2018.11.052
    [26] HAN X H, HE C, ZHENG F Y, et al. Transmission performance evaluation of non-circular spur bevel gear based on a novel isochronal measurement method[J]. Mechanism and Machine Theory, 2023, 185: 105329. doi: 10.1016/j.mechmachtheory.2023.105329
    [27] 吴兆雨. 汽车传动系统振动分析及参数优化[D]. 武汉: 武汉理工大学, 2020: 10-12.

    WU Z Y. Vibration analysis and parameter optimization of automobile transmission system[D]. Wuhan: Wuhan University of Technology, 2020: 10-12(in Chinese).
    [28] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 汽车动力性台架试验方法和评价指标: GB/T 18276—2017[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Test-bed methods and evaluating index of dynamic property of motor vehicles: GB/T 18276—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
    [29] 张广庆, 汪开鑫, 肖茂华, 等. 基于液压机械传动扭矩比的HMCVT稳态传动效率研究[J]. 农业机械学报, 2021, 52(增刊1): 533-541.

    ZHANG G Q, WANG K X, XIAO M H, et al. Research on steady-state transmission efficiency of HMCVT based on torque ratio of hydro-mechanical transmission[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(Sup 1): 533-541(in Chinese).
    [30] 陈文彬, 李晓阳, 童邦安, 等. 谐波减速器的传动效率确信可靠性建模与分析[J]. 振动工程学报, 2022, 35(1): 237-245.

    CHEN W B, LI X Y, TONG B A, et al. Belief reliability modeling and analysis for transmission efficiency of harmonic gear[J]. Journal of Vibration Engineering, 2022, 35(1): 237-245(in Chinese).
    [31] 章德平, 莫易敏, 高勇, 等. 微型汽车驱动桥传动效率的试验研究[J]. 广西大学学报(自然科学版), 2019, 44(3): 613-620.

    ZHANG D P, MO Y M, GAO Y, et al. Experimental study on transmission efficiency of mini-car’s drive axle[J]. Journal of Guangxi University (Natural Science Edition), 2019, 44(3): 613-620(in Chinese).
    [32] 王旺平. 微型汽车传动系统效率建模及试验研究[D]. 武汉: 武汉理工大学, 2015: 12-13.

    WANG W P. Efficiency modeling and experimental study of mini-car transmission system[D]. Wuhan: Wuhan University of Technology, 2015: 12-13(in Chinese).
    [33] 田蜜. 基于减少功率损失的微型汽车传动系统参数优化[D]. 武汉: 武汉理工大学, 2012: 24.

    TIAN M. Parameter optimization of mini-car transmission system based on reducing power loss[D]. Wuhan: Wuhan University of Technology, 2012: 24(in Chinese).
    [34] 王熙. 基于传动系统效率的汽车燃油经济性研究[D]. 重庆: 重庆大学, 2010: 2-3.

    WANG X. Research on automobile fuel economy based on transmission system efficiency[D]. Chongqing: Chongqing University, 2010: 2-3(in Chinese).
    [35] HONG I, ANESHANSLEY E, CHAUDHURY K, et al. Stochastic microcontact model for the prediction of gear mechanical power loss[J]. Tribology International, 2023, 183: 108413. doi: 10.1016/j.triboint.2023.108413
    [36] FERNANDES C M C G, MARQUES P M T, MARTINS R C, et al. Gearbox power loss. Part II: Friction losses in gears[J]. Tribology International, 2015, 88: 309-316. doi: 10.1016/j.triboint.2014.12.004
    [37] FERNANDES C M C G, MARQUES P M T, MARTINS R C, et al. Gearbox power loss. Part III: Application to a parallel axis and a planetary gearbox[J]. Tribology International, 2015, 88: 317-326. doi: 10.1016/j.triboint.2015.03.029
    [38] 李庚. 某微型汽车机械式变速器传动效率分析与研究[D]. 武汉: 武汉理工大学, 2017: 37-40.

    LI G. Analysis and research on transmission efficiency of mechanical transmission of a mini-car[D]. Wuhan: Wuhan University of Technology, 2017: 37-40(in Chinese).
    [39] 王成. 2K-H型封闭式周转轮系功率流与传动效率计算[J]. 机械工程学报, 2023, 59(13): 59-67. doi: 10.3901/JME.2023.13.059

    WANG C. Calculation of power flow and transmission efficiency of 2K-H enclosed revolving gear train[J]. Journal of Mechanical Engineering, 2023, 59(13): 59-67(in Chinese). doi: 10.3901/JME.2023.13.059
    [40] 柴蓉, 张明柱, 王建华, 等. 离合器带排转矩对液压机械无级变速器效率的影响分析[J]. 机械传动, 2022, 46(4): 63-67.

    CHAI R, ZHANG M Z, WANG J H, et al. Analysis of the influence of clutchdrag torque on the efficiency of hydro-mechanical continuously variable transmission[J]. Journal of Mechanical Transmission, 2022, 46(4): 63-67(in Chinese).
    [41] 冯能莲, 米磊. 活齿无级变速器传动效率分析与试验研究[J]. 北京工业大学学报, 2016, 42(10): 1547-1551. doi: 10.11936/bjutxb2015100013

    FENG N L, MI L. Analysis and experimental investigations of transmission efficiency of movable-teeth CVT[J]. Journal of Beijing University of Technology, 2016, 42(10): 1547-1551(in Chinese). doi: 10.11936/bjutxb2015100013
    [42] 李优华, 李权才, 刘忠明. 低速重载齿轮箱传动效率分析与测试[J]. 机械传动, 2017, 41(7): 111-115.

    LI Y H, LI Q C, LIU Z M. Analysis and test of the transmission efficiency of low speed and heavy duty gearbox[J]. Journal of Mechanical Transmission, 2017, 41(7): 111-115(in Chinese).
    [43] 王熙, 秦大同, 胡明辉, 等. 汽车变速器传动效率理论建模与实验测试[J]. 机械传动, 2010, 34(8): 21-24. doi: 10.3969/j.issn.1004-2539.2010.08.006

    WANG X, QIN D T, HU M H, et al. Modeling and testing of the vehicle transmission efficiency[J]. Journal of Mechanical Transmission, 2010, 34(8): 21-24(in Chinese). doi: 10.3969/j.issn.1004-2539.2010.08.006
    [44] ROSANDER P, BEDNAREK G, SEETHARAMAN S, et al. Development of an efficiency model for manual transmissions[J]. ATZ Worldwide, 2008, 110(4): 36-43. doi: 10.1007/BF03225001
    [45] 陈柯序, 李海波, 赵小娟, 等. 基于BP神经网络的纯电动汽车动力传动系统效率建模及分析[J]. 机械设计与研究, 2021, 37(5): 180-185.

    CHEN K X, LI H B, ZHAO X J, et al. Modeling and analysis of the drivetrain efficiency for pure electric vehicles based on BP neural network[J]. Machine Design & Research, 2021, 37(5): 180-185(in Chinese).
    [46] AUTIERO M, CIRELLI M, PAOLI G, et al. A data-driven approach to estimate the power loss and thermal behaviour of cylindrical gearboxes under transient operating conditions[J]. Lubricants, 2023, 11(7): 303. doi: 10.3390/lubricants11070303
    [47] KARABACAK Y E, BAŞ H S. Experimental investigation of efficiency of worm gears and modeling of power loss through artificial neural networks[J]. Measurement, 2022, 202: 111756. doi: 10.1016/j.measurement.2022.111756
    [48] FOTSO H R F, KAZÉ C V A, KENMOÉG D. Real-time rolling bearing power loss in wind turbine gearbox modeling and prediction based on calculations and artificial neural network[J]. Tribology International, 2021, 163: 107171. doi: 10.1016/j.triboint.2021.107171
    [49] BARDAY D, FOSSIER C, CHANGENET C, et al. Investigations on drive axle thermal behaviour: power loss and heat-transfer estimations[J]. SAE International Journal of Engines, 2018, 11(1): 55-66. doi: 10.4271/03-11-01-0004
    [50] KOLIVAND M, LI S, KAHRAMAN A. Prediction of mechanical gear mesh efficiency of hypoid gear pairs[J]. Mechanism and Machine Theory, 2010, 45(11): 1568-1582. doi: 10.1016/j.mechmachtheory.2010.06.015
    [51] XU H, KAHRAMAN A, ANDERSON N E, et al. Prediction of mechanical efficiency of parallel-axis gear pairs[J]. Journal of Mechanical Design, 2007, 129(1): 58-68. doi: 10.1115/1.2359478
    [52] XU H, KAHRAMAN A. Prediction of friction-related power losses of hypoid gear pairs[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2007, 221(3): 387-400. doi: 10.1243/14644193JMBD48
    [53] WANG W P, MO Y M. Test design on minicar transmission system efficiency using dimensional analysis[J]. Applied Mechanics and Materials, 2012, 192: 222-226. doi: 10.4028/www.scientific.net/AMM.192.222
    [54] 贾富淳. 面向效率的高速电驱动系统传动装置润滑特性分析与优化[D]. 长春: 吉林大学, 2021: 17.

    JIA F C. Analysis and optimization of lubrication characteristics of transmission device in efficiency-oriented high-speed electric drive system[D]. Changchun: Jilin University, 2021: 17(in Chinese).
    [55] 朱建杏. 船用减速器功率损失研究[D]. 上海: 上海海洋大学, 2021: 9-14.

    ZHU J X. Study on power loss of marine reducer[D]. Shanghai: Shanghai Ocean University, 2021: 9-14(in Chinese).
    [56] 王钦, 贺迪, 桂良进, 等. 考虑系统变形的电驱动桥齿轮啮合效率研究[J]. 机械工程学报, 2023, 59(3): 66-75. doi: 10.3901/JME.2023.03.066

    WANG Q, HE D, GUI L J, et al. Study of gear meshing efficiency of electric drive axle with considering system deformation[J]. Journal of Mechanical Engineering, 2023, 59(3): 66-75(in Chinese). doi: 10.3901/JME.2023.03.066
    [57] 杨航. 考虑减速器NVH性能的传动效率分析优化[D]. 重庆: 重庆理工大学, 2020: 9-16.

    YANG H. Analysis and optimization of transmission efficiency considering NVH performance of reducer[D]. Chongqing: Chongqing University of Technology, 2020: 9-16(in Chinese).
    [58] GRABOVIC E, ARTONI A, GABICCINI M, et al. Exploration of trade-offs between NVH and efficiency in bevel gear design[J]. Forschung ImIngenieurwesen, 2023, 87(3): 933-947. doi: 10.1007/s10010-023-00690-7
    [59] YUE K, KANG Z, ZHANG M J, et al. Study on gear meshing power loss calculation considering the coupling effect of friction and dynamic characteristics[J]. Tribology International, 2023, 183: 108378. doi: 10.1016/j.triboint.2023.108378
    [60] 郭栋, 陈芳超, 刘骄, 等. 齿轮副高速搅油阻力矩理论计算与试验研究[J]. 机械工程学报, 2021, 57(1): 49-60.

    GUO D, CHEN F C, LIU J, et al. Theoretical and experimental study of oil churning resistance torque of high-speed gear pair[J]. Journal of Mechanical Engineering, 2021, 57(1): 49-60(in Chinese).
    [61] 罗冬源. 齿轮箱功率损失的参数影响规律分析及实验研究[D]. 重庆: 重庆理工大学, 2022: 47.

    LUO D Y.Analysis and experimental study on parameter influence law of gearbox power loss[D].Chongqing: Chongqing University of Technology,2022: 47(in Chinese).
    [62] 范桢. 电动汽车变速箱功率损失及热流场分析与验证[D]. 福州: 福建工程学院, 2022: 9.

    FAN Z. Analysis and verification of power loss and thermal flow field of electric vehicle gearbox[D]. Fuzhou: Fujian Institute of Engineering, 2022: 9(in Chinese).
    [63] GUO D, WEN G B, WANG Y W, et al. A theoretical and experimental study on the power loss of gearbox based on dimensionless analysis[J]. Journal of Tribology, 2023, 145(10): 101701. doi: 10.1115/1.4062449
    [64] DAI Y, MA F, ZHU X, et al. Development of an analytical model to estimate the churning power losses of a spiral bevel gear[J]. Tribology International, 2020, 151: 106536. doi: 10.1016/j.triboint.2020.106536
    [65] DAI Y, ZHANG Y Y, ZHU X. Generalized analytical model for evaluating the gear power losses transition changing from windage to churning behavior[J]. Tribology International, 2023, 185: 108572. doi: 10.1016/j.triboint.2023.108572
    [66] 王羽达, 吕宏展, 侯志勇, 等. 渐开线直齿轮啮合接触计算与分析[J]. 机械传动, 2021, 45(12): 41-47.

    WANG Y D, LÜ H Z, HOU Z Y, et al. Calculation and analysis of meshing contact of involute spur gear[J]. Journal of Mechanical Transmission, 2021, 45(12): 41-47(in Chinese).
    [67] 贾超, 方宗德. 高速齿轮传递误差和啮入冲击的激励模拟及齿面优化修形[J]. 振动与冲击, 2019, 38(23): 103-109.

    JIA C, FANG Z D. Simulation for transmission error and mesh-in impact excitation of high speed gears and their tooth surface optimal modification[J]. Journal of Vibration and Shock, 2019, 38(23): 103-109(in Chinese).
    [68] 刘德伟. 某轻型车用变速器传动效率分析计算[D]. 重庆: 重庆大学, 2017: 57.

    LIU D W. Analysis and calculation of transmission efficiency of a light vehicle transmission[D]. Chongqing: Chongqing University, 2017: 57(in Chinese).
    [69] RAVIVARMAN R, SEKAR R P. Load share model based gear loss factor prediction in high contact ratio spur gear drive[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2023, 237(1): 103-118. doi: 10.1177/13506501221107904
    [70] 陆凤霞, 疏奇, 戈文昌, 等. 考虑安装误差的弧齿锥齿轮接触分析初始点计算方法[J]. 机械制造与自动化, 2020, 49(6): 106-109.

    LU F X, SHU Q, GE W C, et al. Approach to determination of initial point for tooth contact analysis of spiral bevel gears in consideration of installation errors[J]. Machine Building & Automation, 2020, 49(6): 106-109(in Chinese).
    [71] 陆凤霞, 陈文炜, 刘伟平, 等. 斜齿轮轮齿接触有限元分析的新方法研究[J]. 机械传动, 2018, 42(7): 38-43.

    LU F X, CHEN W W, LIU W P, et al. Study on the new method of finite element analysis of helical gear contact[J]. Journal of Mechanical Transmission, 2018, 42(7): 38-43(in Chinese).
    [72] HU X Z, WANG A, LI P P, et al. Influence of dynamic attitudes on oil supply for bearings and churning power losses in a splash lubricated spiral bevel gearbox[J]. Tribology International, 2021, 159: 106951. doi: 10.1016/j.triboint.2021.106951
    [73] HU X Z, JIANG Y Y, LUO C, et al. Churning power losses of a gearbox with spiral bevel geared transmission[J]. Tribology International, 2019, 129: 398-406. doi: 10.1016/j.triboint.2018.08.041
    [74] MASTRONE M N, HARTONO E A, CHERNORAY V, et al. Oil distribution and churning losses of gearboxes: experimental and numerical analysis[J]. Tribology International, 2020, 151: 106496. doi: 10.1016/j.triboint.2020.106496
    [75] 夏兴隆. 纯电动汽车变速器内部流场分析及其润滑优化[D]. 长春: 吉林大学, 2019: 42-45.

    XIA X L. Internal flow field analysis and lubrication optimization of pure electric vehicle transmission[D]. Changchun: Jilin University, 2019: 42-45(in Chinese).
    [76] DAI Y, CHEN X, YANG D, et al. Impulse power loss in orthogonal face gear-numerical and experimental results[J]. The European Physical Journal Plus, 2023, 138(1): 88. doi: 10.1140/epjp/s13360-023-03653-7
    [77] HU X Z, LI P P, WU M G. Influence of the dynamic motion of a splash-lubricated gearbox on churning power losses[J]. Energies, 2019, 12(17): 3225. doi: 10.3390/en12173225
    [78] LIU H, JURKSCHAT T, LOHNER T, et al. Detailed investigations on the oil flow in dip-lubricated gearboxes by the finite volume CFD method[J]. Lubricants, 2018, 6(2): 47. doi: 10.3390/lubricants6020047
    [79] 陈涛, 周金阳, 高旭文, 等. 高速齿轮风阻功率损失的参数化仿真计算[J]. 热能动力工程, 2022, 37(增刊1): 31-36.

    CHEN T, ZHOU J Y, GAO X W, et al. Parametric simulation calculation of wind resistance power loss of high-speed gears[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(Sup 1): 31-36(in Chinese).
    [80] ZHU X, DAI Y, MA F Y. On the estimation of the windage power losses of spiral bevel gears: an analytical model and CFD investigation[J]. Simulation Modelling Practice and Theory, 2021, 110: 102334. doi: 10.1016/j.simpat.2021.102334
    [81] DAI Y, XU L, ZHU X, et al. Application of an unstructured overset method for predicting the gear windage power losses[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 130-141. doi: 10.1080/19942060.2020.1858166
    [82] LIU H, ARFAOUI G, STANIC M, et al. Numerical modelling of oil distribution and churning gear power losses of gearboxes by smoothed particle hydrodynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019, 233(1): 74-86. doi: 10.1177/1350650118760626
    [83] 刘骄. 齿轮副搅油损失仿真分析及试验研究[D]. 重庆: 重庆理工大学, 2019: 12-19.

    LIU J. Simulation analysis and experimental study on oil stirring loss of gear pair[D]. Chongqing: Chongqing University of Technology, 2019: 12-19(in Chinese).
    [84] GUO D, CHEN F C, LIU J, et al. Numerical modeling of churning power loss of gear system based on moving particle method[J]. Tribology Transactions, 2020, 63(1): 182-193. doi: 10.1080/10402004.2019.1682212
    [85] 王交龙. 减速箱齿轮搅油损失仿真与实验研究[D]. 镇江: 江苏大学, 2021: 30-34.

    WANG J L. Simulation and experimental study on oil stirring loss ofreducer gear[D]. Zhenjiang: Jiangsu University, 2021: 30-34(in Chinese).
    [86] 刘桓龙, 谢迟新, 李大法, 等. 齿轮箱飞溅润滑流场分布和搅油力矩损失[J]. 浙江大学学报(工学版), 2021, 55(5): 875-886. doi: 10.3785/j.issn.1008-973X.2021.05.008

    LIU H L, XIE C X, LI D F, et al. Flow field distribution of splash lubrication of gearbox and churning gear torque loss[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(5): 875-886(in Chinese). doi: 10.3785/j.issn.1008-973X.2021.05.008
    [87] 谢迟新, 刘桓龙, 贾瑞河, 等. 基于MPS方法的二级齿轮箱飞溅润滑特性研究[J]. 中国机械工程, 2021, 32(15): 1827-1835. doi: 10.3969/j.issn.1004-132X.2021.15.008

    XIE C X, LIU H L, JIA R H, et al. Research on splash lubrication characteristics of two-stage gearboxes based on MPS method[J]. China Mechanical Engineering, 2021, 32(15): 1827-1835(in Chinese). doi: 10.3969/j.issn.1004-132X.2021.15.008
    [88] LU Y B, LU X N, YE G, et al. Thermal failure analysis of gear transmission system[J]. Journal of Failure Analysis and Prevention, 2024, 24(2): 520-537.
    [89] MARTINS R C, CARDOSO N F R, BOCK H, et al. Power loss performance of high pressure nitrided steel gears[J]. Tribology International, 2009, 42(11-12): 1807-1815. doi: 10.1016/j.triboint.2009.03.006
    [90] CHANGENET C, OVIEDO-MARLOT X, VELEX P. Power loss predictions in geared transmissions using thermal networks-applications to a six-speed manual gearbox[J]. Journal of Mechanical Design, 2006, 128(3): 618-625. doi: 10.1115/1.2181601
    [91] KOFFEL G, VILLE F, CHANGENET C, et al. Investigations on the power losses and thermal effects in gear transmissions[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2009, 223(3): 469-479. doi: 10.1243/13506501JET483
    [92] DE GEVIGNEY J D, CHANGENET C, VILLE F, et al. Thermal modelling of a back-to-back gearbox test machine: application to the FZG test rig[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2012, 226(6): 501-515. doi: 10.1177/1350650111433243
    [93] NAVET P, CHANGENET C, VILLE F, et al. Thermal modeling of the FZG test rig: application to starved lubrication conditions[J]. Tribology Transactions, 2020, 63(6): 1135-1146. doi: 10.1080/10402004.2020.1800155
    [94] LIU Y G, PENG J Y, WANG B, et al. Bulk temperature prediction of a two-speed automatic transmission for electric vehicles using thermal network method and experimental validation[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(10): 2585-2598. doi: 10.1177/0954407018802667
    [95] NING X F, CHEN M Z, ZHOU Z J, et al. Thermal analysis of automobile drive axles by the thermal network method[J]. World Electric Vehicle Journal, 2022, 13(5): 75. doi: 10.3390/wevj13050075
    [96] CORLEY B, KOUKOURA S, CARROLL J, et al. Combination of thermal modelling and machine learning approaches for fault detection in wind turbine gearboxes[J]. Energies, 2021, 14(5): 1375.
    [97] CORLEY B, CARROLL J, MCDONALD A. Fault detection of wind turbine gearbox using thermal network modelling and SCADA data[J]. Journal of Physics: Conference Series, 2020, 1618(2): 022042.
    [98] 辛相锦. 拖拉机动力换挡变速器润滑系统流动与传热仿真研究[D]. 长春: 吉林大学, 2021: 26-35.

    XIN X J. Simulation study on flow and heat transfer in lubrication system of tractor power shift transmission[D]. Changchun: Jilin University, 2021: 26-35(in Chinese).
    [99] 毕旺洋. 汽车自动变速器斜齿轮啮合热功率损失及温度场研究[D]. 天津: 河北工业大学, 2021: 41-48.

    BI W Y. Study on thermal power loss and temperature field of helical gear meshing in automobile automatic transmission[D]. Tianjin: Hebei University of Technology, 2021: 41-48(in Chinese).
    [100] 廖建明. 汽车变速器功率损失及热流场仿真研究[D]. 重庆: 重庆大学, 2019: 69-75.

    LIAO J M. Simulation study on power loss and heat flow field of automobile transmission[D]. Chongqing: Chongqing University, 2019: 69-75(in Chinese).
    [101] 王维, 回春, 汪洋, 等. 基于Romax软件的变速器传动效率仿真分析与试验研究[J]. 机械传动, 2017, 41(10): 178-184

    ANG W, HUI C, WANG Y, et al. Simulation analysis and experimental research of the transmission efficiency of mechanical transmission based on Romax software[J]. Journal of Mechanical Transmission, 2017,41(10): 178-184(in Chinese).
    [102] 包英豪,蔡文奇,彭显昌,等.电动车用两档变速器结构优化及效率分析[C]//2018中国汽车工程学会年会.北京:机械工业出版社,2018: 876-881.

    BAO Y H, CAI W Q, PENG X C, et al. Structural optimization and efficiency analysis of two-speed transmissions for electric vehicles[C]//2018 Proceedings of the Annual Meeting of the Chinese Society of Automotive Engineering. Beijing: Mechanical Industry Press, 2018: 876-881(in Chinese).
    [103] 米林, 吕希砚, 谭伟. 双行星排式混合动力耦合机构效率特性分析[J]. 重庆理工大学学报(自然科学), 2021, 35(4): 23-31.

    MI L, LYU X Y, TAN W. Analysis of efficiency characteristics of double planet row hybrid coupling mechanism[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(4): 23-31(in Chinese).
    [104] 张猛. 高铁齿轮箱轮齿修形及传动效率研究[D]. 太原: 太原理工大学, 2020: 43-54.

    ZHANG M. Study on gear tooth modification and transmission efficiency of high-speed rail gearbox[D]. Taiyuan: Taiyuan University of Technology, 2020: 43-54(in Chinese).
    [105] 郑光泽, 杨航, 郝涛, 等. 齿轮搅油功率损失与减速器传动效率分析[J]. 机械传动, 2020,44(12): 49-54.

    ZHENG G Z, YANG H, HAO T, et al. Analysis of gear oil churning power loss and transmission efficiency of reducer[J]. Journal of Mechanical Transmission, 2020, 44(12): 49-54(in Chinese).
    [106] SALAWU E Y, AJAYI O O, OKENIYI J O, et al. On the prediction of power loss in helical gearbox via simulation approach[J]. Cleaner Engineering and Technology, 2021, 3: 100128. doi: 10.1016/j.clet.2021.100128
    [107] SCHLEGEL C, HÖSL A, DIEL S. Detailed loss modelling of vehicle gearboxes[C]//Proceedings of the 7th International Modelica Conference. Linköping: Linköping University Electronic Press, 2009: 434-443.
    [108] 王扬武, 崔东伟, 张书光, 等. 关于汽车变速器NEDC工况综合效率的仿真计算[C]//第十七届河南省汽车工程科技学术研讨会. 郑州: 河南省汽车工程学会, 2020: 145-147.

    WANG Y W, CUI D W, ZHANG S G, et al. Simulation calculation on the comprehensive efficiency of NEDC working condition of automotive transmission[C]//Proceedings of the 17th Henan Province Automotive Engineering Science and Technology Symposium. Zhengzhou: Henan Automotive Engineering Society, 2020: 145-147(in Chinese).
    [109] 郑钰馨, 奚鹰, 袁浪, 等. RV减速器动力性能综合检测试验平台设计[J]. 中国工程机械学报, 2017, 15(6): 536-541.

    ZHENG Y X, XI Y, YUAN L, et al. The design of testbed for RV reducer’s dynamic characteristics comprehensive testing[J]. Chinese Journal of Construction Machinery, 2017, 15(6): 536-541(in Chinese).
    [110] WANG W P. Efficiency modeling and experimental verification of minicar transmission system[J]. Applied Mechanics and Materials, 2013, 288: 30-36. doi: 10.4028/www.scientific.net/AMM.288.30
    [111] 戴明灿. 微型汽车传动系统效率试验设计与研究[D]. 武汉: 武汉理工大学, 2012: 7-17.

    DAI M C. Design and research on efficiency test of mini-car transmission system[D]. Wuhan: Wuhan University of Technology, 2012: 7-17(in Chinese).
    [112] 赵玮, 王强, 李艳峰, 等. 基于底盘测功机的轮式工程机械底盘动力性能测试[J]. 中国工程机械学报, 2011, 9(3): 347-350.

    ZHAO W, WANG Q, LI Y F, et al. Dynamical property testing on wheel construction machinery chasses using chassis dynamometer[J]. Chinese Journal of Construction Machinery, 2011, 9(3): 347-350(in Chinese).
    [113] 《汽车工程手册》委员会. 汽车工程手册:试验篇[M]. 北京: 人民交通出版社, 2001: 40-44.

    Automotive Engineering Manual Committee.Automotive engineering manual:test article[M]. Beijing: People’s Communications Publishing House, 2001: 40-44(in Chinese).
    [114] 郭应时, 袁伟. 汽车试验学[M]. 3版. 北京: 人民交通出版社, 2022: 50-52.

    GUO Y S, YUAN W. Automobile experimental science[M]. 3rd ed. Beijing: China Communications Press, 2022: 50-52(in Chinese).
    [115] 中华人民共和国工业和信息化部. 汽车传动轴总成技术条件及台架试验方法: QC/T 29082—2019[S]. 北京: 北京科学技术出版社, 2019.

    Ministry of Industry and Information Technology of the People’s Republic of China. Technical conditions and bench test methods of automobile transmission shaft assembly: QC/T 29082—2019[S]. Beijing: Beijing Science & Technology Press, 2019(in Chinese).
    [116] 中华人民共和国工业和信息化部. 汽车机械式变速器总成台架试验方法 第4部分: 重型: QC/T 568.4—2011[S]. 北京: 全国汽车标准化技术委员会, 2011.

    Ministry of Industry and Information Technology of the People’s Republic of China. Automotive mechanical transmission assemblies-bench test methods-Part 4: Heavy duty: QC/T 568.4—2011[S]. Beijing: National Technical Committee on Automobile Standardization, 2011(in Chinese).
    [117] 中华人民共和国工业和信息化部. 汽车半轴技术条件和台架试验方法: QC/T 293—2019[S]. 北京: 北京科学技术出版社, 2019.

    Ministry of Industry and Information Technology of the People’s Republic of China. Technical conditions and bench test methods for automobile half-shafts: QC/T 293—2019[S]. Beijing: Beijing Science & Technology Press, 2019(in Chinese).
    [118] 中华人民共和国机械工业部. 汽车驱动桥台架试验方法: QC/T 533—1999[S]. 北京: 全国汽车标准化技术委员会, 1999.

    Ministry of Machinery Industry of the People’s Republic of China. Benchtest method for automobile drive axle: QC/T 533—1999[S]. Beijing: National Technical Committee on Automobile Standardization, 1999(in Chinese).
    [119] 姚哲皓, 刘金, 刘华军, 等. 商用车驱动桥传动效率分析与计算[C]//2021中国汽车工程学会年会. 北京: 机械工业出版社, 2021: 23-28.

    YAO Z H, LIU J, LIU H J, etal. Analysis and calculation of drive axle efficiency of commercial vehicles[C]//Proceedings of the Annual Meeting of the Chinese Society of Automotive Engineering 2021. Beijing: China Machine Press, 2021: 23-28(in Chinese).
    [120] 董柳杰, 赵航, 杨钰洁, 等. 新能源汽车齿轮箱齿轮修形设计及效率分析[J]. 机床与液压, 2022, 50(17): 77-81.

    DONG L J, ZHAO H, YANG Y J, et al. Gear modification design and efficiency analysis for new energy automobile gearbox[J]. Machine Tool & Hydraulics, 2022, 50(17): 77-81(in Chinese).
    [121] 莫易敏, 徐伟, 胡杰, 等. 轴承游隙对变速器传动效率的影响研究[J]. 机械传动, 2018,42(10): 53-57.

    MO Y M, XU W, HU J, et al. Research of the influence of bearing clearance on the transmission efficiency of gearbox[J]. Journal of Mechanical Transmission, 2018,42(10): 53-57(in Chinese).
    [122] 范文健, 孔祥馗, 毛万鑫, 等. 轴承对MT变速器传动效率的影响及优化研究[J]. 机械传动, 2022, 46(7): 113-120.

    FAN W J, KONG X K, MAO W X, et al. Study on the influence of bearings on transmission efficiency of manual transmission and optimization[J]. Journal of Mechanical Transmission, 2022, 46(7): 113-120(in Chinese).
    [123] 占锐, 程华国, 李俊, 等. 重型汽车驱动桥传动效率试验台及方法研究[J]. 机械传动, 2017, 41(3): 197-202.

    ZHAN R, CHENG H G, LI J, et al. Research of the method and test bench of drive axle transmission efficiency for heavy vehicle[J]. Journal of Mechanical Transmission, 2017, 41(3): 197-202(in Chinese).
    [124] CRUZ J A O, MARQUES P M T, SEABRA J H O, et al. No-load power loss of a rear axle gear transmission: measurement and validation[J]. Journal of Tribology, 2022, 144(9): 091202. doi: 10.1115/1.4054101
    [125] 王迪, 夏海纯, 倪德, 等. 直升机主减速器传动效率试验方法[J]. 航空动力学报, 2020, 35(12): 2673-2680.

    WANG D, XIA H C, NI D, et al. Experiment methods of transmission efficiency for helicopter main gearbox[J]. Journal of Aerospace Power, 2020, 35(12): 2673-2680(in Chinese).
    [126] DINDAR A, CHAUDHURY K, HONG I, et al. An experimental methodology to determine components of power losses of a gearbox[J]. Journal of Tribology, 2021, 143(11): 111203. doi: 10.1115/1.4049940
    [127] FERNANDES C, MARTINS R, SEABRA J, et al. FZG gearboxes lubricated with different formulations of polyalphaolefin wind turbine gear oils[C]//Proceedings of the International Gear Conference. Abington: Woodhead Publishing Limited, 2014: 699-708.
    [128] HAMMAMI M, FERNANDES C M C G, MARTINS R, et al. Torque loss in FZG-A10 gears lubricated with axle oils[J]. Tribology International, 2019, 131: 112-127. doi: 10.1016/j.triboint.2018.10.017
    [129] GIANNETTI G, MELI E, RINDI A. Modelling and experimental study of power losses in toothed wheels[J]. Sensors, 2023, 23(12): 5541. doi: 10.3390/s23125541
    [130] DINDAR A, CHIMANPURE A S, KAHRAMAN A. Mechanical power losses of ball bearings: model and experimental validation[J]. Journal of Tribology, 2022, 144(5): 051603. doi: 10.1115/1.4052064
    [131] YILMAZ M, ÖNÜT A, LOHNER T, et al. Gear and bearing power losses: from dip to minimum quantity lubrication[J]. Industrial Lubrication and Tribology, 2022, 74(9): 985-994. doi: 10.1108/ILT-08-2021-0349
  • 加载中
图(19)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  63
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 录用日期:  2023-10-13
  • 网络出版日期:  2023-10-26
  • 整期出版日期:  2025-06-30

目录

    /

    返回文章
    返回
    常见问答