Reliability assessment and lifetime prediction for train traction system considering multiple dependent components
-
摘要:
牵引系统作为城市轨道交通列车的核心,其可靠性对保障列车的运行安全具有重要意义。针对牵引系统结构复杂且失效模式多样的问题,开展可靠性评估与寿命预测研究。着重围绕牵引系统中的关键元件:牵引电机和绝缘栅双极晶体管(IGBT),构建牵引电机退磁故障和IGBT键合线失效的性能退化模型,采用融合失效机理的维纳过程描述2个元件的性能退化过程,并采用Copula函数描述两者的相关性。对于离线可靠性评估,采用贝叶斯马尔可夫链蒙特卡罗方法进行未知参数估计;对于在线剩余使用寿命预测,采用贝叶斯与期望最大相融合的算法更新模型中的未知参数。基于牵引系统的性能退化试验数据,验证所提模型和算法,结果表明:考虑牵引电机和IGBT 2个元件相关的可靠性模型能够精准实现可靠性评估,采用贝叶斯与期望最大相融合的参数更新算法可有效提升寿命预测精度。
Abstract:The traction system, serving as the power core of urban rail transit trains, plays a crucial role in ensuring the safe operation of the trains. Reliability assessment and lifespan prediction are investigated in order to tackle the difficulties brought about by the traction system’s intricate structure and numerous failure types. The physics of failure model for motor demagnetization and insulated gate bipolar transistor (IGBT) are constructed. The degradation processes for those performance indicators are described by the Wiener process fusing failure mechanism while considering unit-to-unit variability. The Copula function is used to describe the dependent relationship between performance indicators. As for off-line parameter estimation, the Bayesian Markov chain Monte Carlo method estimates unknown parameters. As for online remaining useful life prediction, the algorithm combining Bayesian and expectation-maximization is implemented to update unknown parameters. The proposed model and algorithm are validated by the degradation data of the traction system. The results indicate that the reliability model considering the dependent relationship between the motor and IGBT improves the accuracy of reliability assessment. The remaining useful life prediction accuracy is improved by the parameter updating approach that combines Bayesian and expectation-maximization.
-
Key words:
- train traction system /
- Wiener process /
- Copula function /
- reliability /
- lifetime prediction
-
表 1 模型5未知参数估计结果
Table 1. Unknown parameter estimation results for model 5
牵引电机/IGBT ${\eta _{\mu }}$ $\sigma _{\mu }^2$ $\sigma^2$ 牵引电机 1.1249 0.4582 0.2179 IGBT 1.0950 0.1431 0.1121 注:相关系数θ = 0.8546 。表 2 不同算法得到的退化量估计值与实际值的均方误差
Table 2. The MSEs between the estimated degradation path and true degradation path based on different algorithms
算法 均方误差 牵引电机 IGBT 贝叶斯-EM 0.0247 0.0166 EM 0.04682 0.03411 表 3 不同预测模型得到的剩余使用寿命估计值与实际剩余使用寿命的均方误差
Table 3. The MSEs between the estimated RUL and true RUL based on different prediction models
模型 均方误差 模型1 0.08974 模型2 0.07612 模型3 0.03672 -
[1] 牛刚, 刘森轶. 永磁牵引系统退磁故障自主延寿控制[J]. 仪器仪表学报, 2017, 38(9): 2251-2257. doi: 10.3969/j.issn.0254-3087.2017.09.020NIU G, LIU S Y. Autonomous life extending control for PMSM rail vehicles under demagnetizing fault[J]. Chinese Journal of Scientific Instrument, 2017, 38(9): 2251-2257(in Chinese). doi: 10.3969/j.issn.0254-3087.2017.09.020 [2] 马伊光. 高转矩密度永磁同步电机的可靠性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.MA Y G. Research on reliability of high torque density permanent magnet synchronous motor[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese). [3] GUO H Y, WANG S P, SHI J, et al. Dynamically updated digital twin for prognostics and health management: application in permanent magnet synchronous motor[J]. Chinese Journal of Aeronautics, 2024, 37(6): 244-261. doi: 10.1016/j.cja.2023.12.031 [4] 唐春萍. 高速列车牵引电机驱动系统复合故障诊断[D]. 南京: 南京航空航天大学, 2018.TANG C P. Compound fault diagnosis of traction motor drive system of high-speed train[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese). [5] 罗俊. IGBT模块键合引线断裂故障的热形变场特性分析及应用[D]. 成都: 电子科技大学, 2022.LUO J. Analysis and application of thermal deformation field characteristics of IGBT module bonding wire fracture fault[D]. Chengdu: University of Electronic Science and Technology of China, 2022(in Chinese). [6] 杨德浩. 考虑牵引逆变器IGBT模块可靠性的列车运行曲线优化方法研究[D]. 北京: 北京交通大学, 2022.YANG D H. Research on optimization method of train operation curve considering reliability of IGBT module of traction inverter[D]. Beijing: Beijing Jiaotong University, 2022(in Chinese). [7] YANG L, AGYAKWA P A, JOHNSON C M. Physics-of-failure lifetime prediction models for wire bond interconnects in power electronic modules[J]. IEEE Transactions on Device and Materials Reliability, 2013, 13(1): 9-17. doi: 10.1109/TDMR.2012.2235836 [8] RAMEZANI S B, CUMMINS L, KILLEN B, et al. Scalability, explainability and performance of data-driven algorithms in predicting the remaining useful life: a comprehensive review[J]. IEEE Access, 2023, 11: 41741-41769. doi: 10.1109/ACCESS.2023.3267960 [9] YANG T H, LI S H, DUAN S Y, et al. Performance degradation model and reliability evaluation of brush DC motor for the intelligent on-off valve[J]. Journal of Electrical Engineering & Technology, 2023, 18(3): 1909-1918. [10] 朱琦. 电机驱动系统母线电容状态监测与寿命预测方法研究[D]. 武汉: 华中科技大学, 2022.ZHU Q. Research on monitoring and life prediction method of bus capacitance in motor drive system[D]. Wuhan: Huazhong University of Science and Technology, 2022(in Chinese). [11] 曾东. 基于加速老化试验IGBT性能退化特征参量的可靠性评估[D]. 重庆: 重庆大学, 2019.ZENG D. Reliability evaluation of IGBT performance degradation characteristic parameters based on accelerated aging test[D]. Chongqing: Chongqing University, 2019(in Chinese). [12] 王宇琦. IGBT疲劳老化失效剩余使用寿命预测的研究[D]. 西安: 西安电子科技大学, 2017.WANG Y Q. Study on prediction of remaining service life of IGBT in fatigue aging failure[D]. Xi’an: Xidian University, 2017(in Chinese). [13] 刘小平, 郭斌, 崔德军, 等. 基于二元维纳过程的小样本齿轮泵可靠寿命预测[J]. 中国机械工程, 2020, 31(11): 1315-1322. doi: 10.3969/j.issn.1004-132X.2020.11.007LIU X P, GUO B, CUI D J, et al. Q-precentile life prediction based on bivariate Wiener process for gear pumps with small sample sizes[J]. China Mechanical Engineering, 2020, 31(11): 1315-1322(in Chinese). doi: 10.3969/j.issn.1004-132X.2020.11.007 [14] 王少萍, 陈仁同, 张超. 飞机液压泵二维性能退化的可靠性评估[J]. 北京航空航天大学学报, 2022, 48(9): 1613-1623.WANG S P, CHEN R T, ZHANG C. Reliability estimation for aircraft hydraulic pump based on bivariate performance degradation analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1613-1623(in Chinese). [15] ZHANG C, CHEN R T, BAI G H, et al. Reliability estimation of rotary lip seal in aircraft utility system based on time-varying dependence degradation model and its experimental validation[J]. Chinese Journal of Aeronautics, 2020, 33(8): 2230-2241. doi: 10.1016/j.cja.2019.08.018 [16] CHEN R T, ZHANG C, WANG S P, et al. Importance measures for critical components in complex system based on Copula hierarchical Bayesian network[J]. Reliability Engineering & System Safety, 2023, 230: 108883. [17] SI X S, ZHOU D H. A generalized result for degradation model-based reliability estimation[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(2): 632-637. doi: 10.1109/TASE.2013.2260740 [18] SI X S, WANG W B, HU C H, et al. Remaining useful life estimation based on a nonlinear diffusion degradation process[J]. IEEE Transactions on Reliability, 2012, 61(1): 50-67. doi: 10.1109/TR.2011.2182221 [19] NELSEN R B. An introduction to Copulas[M]. Berlin: Springer, 2006. [20] JOE H. Multivariate models and multivariate dependence concepts[M]. London: Chapman & Hall, 1997. [21] NG S K, KRISHNAN T, MCLACHLAN G J. The EM algorithm[M]//GENTLE J E, HÄRDLE W K, MORI Y. Handbook of computational statistics. Berlin: Springer, 2011: 139-172. -