Applicability of steady-state availability model and unsteady-state time-varying availability model
-
摘要:
针对METRIC模型中以备件期望短缺数计算的稳态可用度模型能否直接转换适用于非稳态时变可用度模型,扩展METRIC理论,分别建立了仅以备件期望短缺数计算的时变可用度模型和以备件期望短缺数及方差计算的时变可用度模型。在保障系统达到稳态(修复概率为1)和处于非稳态(修复概率小于1)情况下,分别采用2种时变可用度模型计算表决结构单元和串联结构单元的可用度,并与Monte Carlo仿真模型计算得到的结果进行对比分析。结果表明:以备件期望短缺数计算的时变可用度模型仅在串联结构单元且保障系统达到稳态时与仿真可用度值一致,适合于装备全寿命周期内备件配置优化的计算;以备件期望短缺数及方差计算的时变可用度模型无论保障系统处于稳态或非稳态,适应性均较强,适合于任务期作战单元备件配置优化计算。
Abstract:Aimed at whether the steady-state availability model of METRIC model can be directly applied to the unsteady-state time-varying availability model, by extending the METRIC theory, a time-varying availability model based on the expected order of spare parts and a time-varying availability model based on the expected back order and variance of spare parts have been built. In the case that the system reaches steady state (repair probability is 1) and is in unstable state (repair probability is less than 1), two time-varying availability models are used to calculate the availability of voting structural unit and serial structural unit, and the results are compared with Monte Carlo simulation model. The results show that:when the equipment structure is a series relation and the system is stable, the time-varying availability model based on the expected number of spare parts is consistent with the simulation model, and it is suitable for the calculation of spare parts configuration optimization in the whole life cycle of the equipment; the model of time-varying availability, which is based on the expected order and variance of spare parts, is suitable for the optimization calculation of the spare parts configuration of the combat unit, regardless of the steady state and unsteady state of the support system.
-
Key words:
- METRIC /
- time-varying availability /
- steady-state /
- unsteady-state /
- expected back order
-
表 1 备件保障信息清单
Table 1. List of spare parts and support information
LRU MTBF/h M/个 m/个 τl/h LRU1 600 1 1 200 LRU2 600 2 2 200 LRU3 600 3 3 200 表 2 不同模型的可用度值
Table 2. Availability values for different models
LRU 备件数量 仿真值 模型1 模型2 解析值 仿真与解析值相对误差/% 解析值 仿真与解析值相对误差/% LRU1 0 0.530 0.415 -21.7 0.55 3.8 LRU2 1 0.590 0.490 -16.9 0.58 -1.7 LRU3 2 0.610 0.505 -0.6 0.60 -1.6 表 3 LRU4备件清单
Table 3. LRU4 spare part list
LRU MTBF/h M/个 τl/h LRU4 600 3 200 表 4 LRU5备件清单
Table 4. LRU5 spare part list
LRU MTBF/h M/个 τl/h LRU5 600 5 200 -
[1] 任敏, 陈全庆, 沈震, 等.备件供应学[M].北京:国防工业出版社, 2013:278-289.REN M, CHEN Q Q, SHEN Z, et al.Spare parts supply[M].Beijing:National Defence Industry Press, 2013:278-289(in Chinese). [2] SHERBROOKE C C.Metric:A multi-echelon technique for recoverable item control[J].Operations Research, 1968, 16(1):122-141. doi: 10.1287/opre.16.1.122 [3] MUCKSTADT J A.A model for a multi-item multi-echelon multi-indenture inventory system[J].Management Science, 1973, 20(4):472-481. http://citeseerx.ist.psu.edu/showciting?cid=258687 [4] SHERBROOKE C C.VARI-METRIC:Improved approximations for multi-indenture multi-echelon availability models[J].Operations Research, 1986, 34(2):311-319. doi: 10.1287/opre.34.2.311 [5] AXSATER S.A new decision rule for lateral transshipments in inventory systems[J].Management Science, 2003, 49(9):1168-1179. doi: 10.1287/mnsc.49.9.1168.16568 [6] 王慎, 李庆民, 彭英武, 等.串件拼修对策下两级备件维修供应系统动态管理模型[J].航空学报, 2013, 34(6):1326-1335. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201306012.htmWANG S, LI Q M, PENG Y W, et al.Dynamic management model of two-echelon maintence supply system for spare parts with cannibalization[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1326-1335(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKXB201306012.htm [7] SLEPTCHENKO A, VAN DER HEIJDEN M C, VAN HARTEN A.Effects of finite repair capacity in multi-echelon, multi-indenture service part supply systems[J].International Journal of Production Economics, 2002, 79(3):209-230. doi: 10.1016/S0925-5273(02)00155-X [8] 聂涛, 盛文.K:N系统可修复件两级供应保障优化研究[J].系统工程与电子技术, 2010, 32(7):1452-1455. http://www.wenkuxiazai.com/doc/23bec76825c52cc58bd6bec0.htmlNIE T, SHENG W.Research on two-echelon supply support optimizing for repairable spare parts of K:N system[J].Systems Engineering and Electronics, 2010, 32(7):1452-1455(in Chinese). http://www.wenkuxiazai.com/doc/23bec76825c52cc58bd6bec0.html [9] ISAACSON B.Dynametric version 4:A capability assessment model including constrained repair and management adaptations:R3389AF[R].Santa Monica:The RAND Corperation, 1988. [10] SLAY F, BACHMAN T C, KLINE R C, et al.Optimizing spares support:The aircraft sustainability model:AF501MR1 s[R].Virginia:Logistics Management Institute, 1996. [11] LAU H C, SONG H, SEE T C, et al.Evaluation of time-varying availability in multi echelon spare parts systems with passivation[J].European Journal of Operational Research, 2006, 170(1):91-105. doi: 10.1016/j.ejor.2004.06.022 [12] 徐立, 李庆民, 李华, 等.有限维修能力下作战单元时变可用度评估模型[J].国防科技大学学报, 2016, 38(1):114-121. doi: 10.11887/j.cn.201601019XU L, LI Q M, LI H, et al.Evaluation model of time-varying availability for combat units under finite repair capacity[J].Journal of National University of Defense Technology, 2016, 38(1):114-121(in Chinese). doi: 10.11887/j.cn.201601019 [13] 周亮, 彭英武, 李庆民, 等.串件拼修策略下不完全修复件可用度评估建模[J].系统工程与电子技术, 2017, 39(5):1065-1071. doi: 10.3969/j.issn.1001-506X.2017.05.18ZHOU L, PENG Y W, LI Q M, et al.Time-varying availability evaluation modeling of incomplete repair parts under cannibalization[J].Systems Engineering and Electronics, 2017, 39(5):1065-1071(in Chinese). doi: 10.3969/j.issn.1001-506X.2017.05.18 [14] 蔡芝明, 金家善, 陈砚桥, 等.非稳态及多约束下多层级系统器材配置优化方法[J].北京航空航天大学学报, 2017, 43(1):36-46. http://bhxb.buaa.edu.cn/CN/abstract/abstract13899.shtmlCAI Z M, JIN J S, CHEN Y Q, et al.Optimization method of multi-echelon system equipment configuration under unsteady state and multi-constraint[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):36-46(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13899.shtml [15] 周亮, 李庆民, 王睿, 等.K/N(G)冗余结构下随舰备件配置方案[J].系统工程与电子技术, 2015, 37(12):2785-2790. doi: 10.3969/j.issn.1001-506X.2015.12.19ZHOU L, LI Q M, WANG R, et al.Spare parts allocation scheme with ship for K/N(G) redundant structure[J].Systems Engineering and Electronics, 2015, 37(12):2785-2790(in Chinese). doi: 10.3969/j.issn.1001-506X.2015.12.19 [16] SHERBROOKE C C.Optimal inventory modeling of systems multi-echelon techniques[M].2nd ed.Boston:Artech House, 2004. [17] 周亮, 彭英武, 李庆民, 等.面向任务的备件保障评估通用模型研究[J].系统工程与电子技术, 2017, 39(9):2046-2051. doi: 10.3969/j.issn.1001-506X.2017.09.18ZHOU L, PENG Y W, LI Q M, et al.Research on the general evaluation model of task oriented spare parts supply[J].Systems Engineering and Electronics, 2017, 39(9):2046-2051(in Chinese). doi: 10.3969/j.issn.1001-506X.2017.09.18 [18] 李华, 李庆民, 刘任洋.任务期内多层级不完全修复件的可用度评估[J].系统工程与电子技术, 2016, 38(2):476-480. doi: 10.3969/j.issn.1001-506X.2016.02.35LI H, LI Q M, LIU R Y.Evaluation of availability for multi-indenture partial repairable spares during the mission[J].Systems Engineering and Electronics, 2016, 38(2):476-480(in Chinese). doi: 10.3969/j.issn.1001-506X.2016.02.35 -