-
摘要:
为了全面考察舰载机(CBA)弹射起飞系统的安全性能,在绝对坐标系下,利用自然坐标法,建立了弹射起飞过程的多体耦合动力学模型,结合舰载机弹射仿真曲线,从舰载机加速度和飞行轨迹两方面研究了不同参数对弹射安全的影响规律。仿真结果表明:在弹射滑跑阶段,弹射力对水平加速度影响较大,在自由飞行阶段,发动机推力对水平加速度影响较大,而起飞重量在整个弹射过程对加速度均有明显影响;定力栓临界值的增大对加速度、飞行轨迹影响不大,但需要考虑其带来的结构振动和时延效应;较长的剩余甲板可以增加离舰升力,从而有效减小离舰下沉量;舰船纵摇可引起飞行轨迹大幅下沉,应避免舰船纵摇位移最大的时刻离舰起飞,其中舰船运动引起牵制杆的提前释放也应是控制弹射时间的考虑因素之一;弹射起飞安全性设计是一个多变量寻优过程,单一要素的优化难以得到满意结果,需综合分析各要素的影响。
Abstract:To comprehensively investigate the safety performance of carrier-based aircraft (CBA) catapult takeoff process, a multi-body coupled dynamics model was established in absolute coordinate system with the natural coordinate method. Based on the simulation curves of catapult launch, the influence of different parameters on catapult safety is studied from two aspects:the CBA acceleration and the flight trajectory. The simulation results show that the catapult force and the engine thrust are the main reasons that affect the horizontal acceleration during taxiing process and airborne flight process respectively, while the takeoff weight imposes great effects during the entire catapult process; although the enhancement of the fixed-load plug has little effect on the acceleration and flight trajectory, the influence on structure vibration and time delay cannot be ignored; longer deck edge distance can increase the departure lift and reduce the trajectory descent effectively; carrier pitch can cause great sink, so it is important to avoid the departure when carrier pitch is at the maximum, and meanwhile the early release of the holdback bar caused by the ship motion should be considered for controlling the catapult time; catapult launch safety design is a multivariate optimization process and needs comprehensive analysis of various factors rather than focusing on single factor.
-
表 1 起落架缓冲器主要参数
Table 1. Main parameters of landing gear buffer module
参数 前起 主起 支柱倾角/(°) -4 5 缓冲行程/cm 72 58 全压-停机压缩比 3 2 机轮胎压/MPa 2.6 1.8 轮胎型号Ⅷ/mm 600×180-280 900×275-370 注:停机行程比为0.56;活塞面积为0.02 m2;阻尼面积比为0.015;停机-全伸压缩比为3。 -
[1] SMALL D.Full scale tests of nose tow catapulting[C]//1st AIAA Annual Meeting.Reston: AIAA, 1964: 1964-327. [2] RAMSEY J E, DIXON W R.Carrier suitability tests of the model A-6A aircraft: NATC FT-9R-67[R].St.Mary's County: NATC, 1967. [3] LUCAS C B.Catapult criteria for a carrier-based airplane: AD702814[R].Dallas: LTV Aerospace Corporation Dallas Tex Vought Aeronautics Division, 1968. [4] EPPEL J C, HARDY G, MARTIN J L.Flight investigation of the use of a nose gear jump strut to reduce takeoff ground roll distance of STOL aircraft: NASA TM108819[R].Washington, D.C.: NASA, 1994. [5] DEVESON K.STOVL carrier operations-Comparison of safe launch criteria and MTOW sensitivities using APOSTL[C]//World Aviation Congress.Reston: AIAA, 1997: 1997-5516. [6] 王大海, 苏彬.舰面运动对弹射起飞特性的影响[J].飞行力学, 1994, 32(1):57-63.WANG D H, SU B.The deck motion effects on the catapult-assisted take-off characteristics of the carrier based airplane[J].Flight Dynamics, 1994, 32(1):57-63(in Chinese). [7] 贾忠湖, 高永, 韩维.航母纵摇对舰载机弹射起飞的限制研究[J].飞行力学, 2002, 20(2):19-21. doi: 10.3969/j.issn.1002-0853.2002.02.005JIA Z H, GAO Y, HAN W.Research on the limitation of vertical toss to the warship-based aircraft's catapult-assisted take-off[J].Flight Dynamics, 2002, 20(2):19-21(in Chinese). doi: 10.3969/j.issn.1002-0853.2002.02.005 [8] 赵险峰.航母舰载机蒸汽弹射系统的数学仿真研究[J].舰载武器, 1996, 4(3):45-53.ZHAO X F.Study on the mathematical simulation of the steam catapult system of carrier-based aircraft[J].Shipborne Weapons, 1996, 4(3):45-53(in Chinese). [9] 周清和.蒸汽弹射器速率阀研究[J].液压与气动, 2003, 26(4):3-4. doi: 10.3969/j.issn.1000-4858.2003.04.002ZHOU Q H.Study on the velocity valve for steam launching equipment[J].Chinese Hydraulics & Pneumatics, 2003, 26(4):3-4(in Chinese). doi: 10.3969/j.issn.1000-4858.2003.04.002 [10] 于浩, 聂宏, 魏小辉.舰载机弹射起飞前起落架牵制载荷突卸动力学分析[J].航空学报, 2011, 32(8):1435-1444.YU H, NIE H, WEI X H.Analysis on the dynamic characteristics of carrier-based aircraft nose landing gear with sudden holdback load discharge[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(8):1435-1444(in Chinese). [11] 沈强, 黄再兴.舰载机起落架突伸性能参数敏感性分析[J].航空学报, 2010, 31(3):532-537.SHEN Q, HUANG Z X.Sensitivity analysis of fast-extension performance of carrier based aircraft landing gear to varying parameters[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(3):532-537(in Chinese). [12] 魏小辉, 刘成龙, 聂宏, 等.舰载机前起落架突伸动力学分析及试验方法[J].航空学报, 2013, 34(6):1363-1369.WEI X H, LIU C L, NIE H, et al.Dynamics and test method of carrier-based aircraft nose landing gear sudden extension[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1363-1369(in Chinese). [13] 李新飞, 王立辉, 朱齐丹, 等.考虑弹射起飞的航母剩余甲板长度研究[J].哈尔滨工程大学学报, 2015, 36(1):113-118.LI X F, WANG L H, ZHU Q D, et al.Analysis of deck edge distance taking into account the catapult launch[J].Journal of Harbin Engineering University, 2015, 36(1):113-118(in Chinese). [14] 刘星宇, 许东松, 王立新.舰载飞机弹射起飞的机舰参数适配特性[J].航空学报, 2010, 31(1):102-108.LIU X Y, XU D S, WANG L X.Match characteristics of aircraft-carrier parameters during catapult takeoff of carrier-based aircraft[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(1):102-108(in Chinese). [15] WANG W J, QU X J, GUO L L.Multi-agent based hierarchy simulation models of carrier-based aircraft catapult launch[J].Chinese Journal of Aeronautics, 2008, 21(3):223-231. doi: 10.1016/S1000-9361(08)60029-1 [16] ZHEN Z, JIANG J, WANG X, et al.Modeling, control design, and influence analysis of catapult-assisted take-off process for carrier-based aircrafts[J].Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2018, 233(2):2527-2540. [17] 王维军, 屈香菊, 郭林亮.舰载弹射起飞多体动力学仿真张量模型[J].系统仿真学报, 2009, 21(24):7915-7919.WANG W J, QU X J, GUO L L.Multibody simulation models in tensor form for carrier-based aircraft catapult launch[J].Journal of System Simulation, 2009, 21(24):7915-7919(in Chinese). [18] 黎伟明, 马晓利.舰载机多体动力学建模与弹射起飞模拟[J].机械科学与技术, 2016, 35(11):1797-1804.LI W M, MA X L.Multi-body dynamics modeling and catapult-launching simulation for carrier-based aircraft[J].Mechanical Science and Technology for Aerospace Engineering, 2016, 35(11):1797-1804(in Chinese). [19] DE JALÓN J G.Twenty-five years of natural coordinates[J].Multibody System Dynamics, 2007, 18(1):15-33. doi: 10.1007/s11044-007-9068-0 [20] CZAPLICKI A, SILVA M T, AMBRÓSIO J C.Biomechanical modelling for whole body motion using natural coordinates[J].Journal of Theoretical & Applied Mechanics, 2004, 42(4):927-944. [21] CZAPLICKI A, SILVA M, AMBRÓSIO J, et al.Estimation of the muscle force distribution in ballistic motion based on a multibody methodology[J].Computer Methods in Biomechanics and Biomedical Engineering, 2006, 9(1):45-54. doi: 10.1080/10255840600603625 [22] KRAUS C, BOCK H G, MUTSCHLER H.Parameter estimation for biomechanical models based on a special form of natural coordinates[J].Multibody System Dynamics, 2005, 13(1):101-111. doi: 10.1007/s11044-005-4081-7 [23] AUSEJO S, SUESCUN Á, CELIGVETA J.An optimization method for overdetermined kinematic problems formulated with natural coordinates[J].Multibody System Dynamics, 2011, 26(4):397-410. doi: 10.1007/s11044-011-9263-x [24] PEREIRA A F, SILVA M T, MARTINS J M, et al.Implementation of an efficient muscle fatigue model in the framework of multibody systems dynamics for analysis of human movements[J].Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics, 2011, 225(4):359-370. doi: 10.1177/1464419311415954 [25] 张乃平, 林国锋, 何植岱.地面效应对舰载机起飞特性的影响[J].空气动力学学报, 1992, 13(4):451-457.ZHANG N P, LIN G F, HE Z D.Ground effect on the take-off characteristics of see-based aircraft[J].Acta Aerodynamica Sinica, 1992, 13(4):451-457(in Chinese). -