Investigation of cloud detecting for satellite images based on immune coding principle
-
摘要: 针对卫星遥感图像中云与下垫面的复杂性和多样性,提出了一种新的在复杂背景下常用目标图像描述方法.通过类比生物免疫抗体特异性与其构成单元氨基酸性质的相关性,得到目标图像的免疫基元集合形式及其分类方法.借鉴生物免疫抗体编码顺序中氨基酸结合能量最小原则,统计分析出训练样本的免疫基元亲和度计算公式,实现了目标图像描述的有限多特征优化组合.对于云检测问题,最终提出云的免疫抗体编码方法,定义了云的免疫亲和度计算公式,并成功构建了云免疫抗体.经200幅IKONOS卫星图像测试,验证了该方法在识别率和运行时间效率方面的有效性.Abstract: To utilize the texture diversity of clouds and land in remotely sensed images, a novel describing method for image targets identification with complex background was proposed. The properties and classification of object image describing immune primitives was computed by the correlation between antibody property and the specificity of amino acid residues. The affinity formula of the training image-s immune primitives was presented by statistical analysis, which bears an analogy with the lowest amino acids combinative energy according to the biological immune antibody coding principle, to achieve the finite dimension object image features- optimize combination. Furthermore, The methodology was employed in the cloud contamination area detection. The cloud antibody has been configured and the cloud antibody has been tested on 200 images and more than 97% of results were correct, which proofed the validity of immune describing method for object image recognition in complex background.
-
Key words:
- satellite image /
- cloud detecting /
- artificial immune
-
[1] Reynolds D W. A Bi-spectral method for cloud parameter determination[J]. Monthly Weather Rev, 1977, 105(4):446-457 [2] Sarkar N. An efficient approach to esti-mate fractal dimension of texture images[J]. Pattern Recognition, 1992, 25(9):1035-1041 [3] 陈伟. 基于气象卫星分形纹理的云雾分离研究[J]. 自然灾害学报, 2003, 12(2):133-139 Chen Wei. Recognition of fog and cloud in meteorological satellite image based on fractal texture structure analysis[J]. Journal of Natural Disasters, 2003, 12(2):133-139(in Chinese) [4] 冯建文, 顾行发. CBERS-02 卫星图像薄云的去除方法研究[J]. 中国科学E, 2005, 35(增刊I):89-96 Feng Jianwen, Gu Hangfa. Research on removing light cloud cover from CBERS-02 satellite image[J]. Science in China Series E, 2005, 35(Supplement I):89-96 (in Chinese) [5] 金伯泉.细胞与分子免疫学[M].北京:科学出版社,2001:96-98 Jin Boquan. Cellular and molecular immunology[M]. Beijing:Science Press, 2001:96-98(in Chinese) [6] Hugues Bersini. The immune and the chemical crossover[J]. IEEE Transaction on Evolutionary Computation, 2002, 16(3):306-312 [7] Milan Sonak, Vaclav Hlavac. Image processing, analysis and machine vision[M]. Florence:Thomson Learning, 1999:654-664 期刊类型引用(5)
1. 李敬强,房秋,樊天辰,马龙. 面部三维生理特征点在睡眠剥夺中的疲劳检测. 北京航空航天大学学报. 2024(09): 2753-2762 . 本站查看
2. 刘亚威,孙延杰,郭恒瑜,冯禹扬,郭昕曜. 管制员疲劳国内外研究综述与展望. 山东航空学院学报. 2024(04): 107-114 . 百度学术
3. 赵小平,闵忠兵,薛运强,莫振龙,张姝玮,龚俊,喻佳. 新手驾驶人疲劳状态下的视觉特性研究. 重庆理工大学学报(自然科学). 2023(01): 149-157 . 百度学术
4. 李一帆,颜玢玢,王鹏,陈铎,王葵如,桑新柱,赵思铭. 基于多种眼动行为的裸眼3D显示视觉疲劳评估方法. 液晶与显示. 2023(06): 809-818 . 百度学术
5. 尚凯,罗婧,王震亚. 基于瞳孔检测的座椅舒适度评价. 林业工程学报. 2019(02): 152-157 . 百度学术
其他类型引用(8)
-

计量
- 文章访问数: 2574
- HTML全文浏览量: 37
- PDF下载量: 853
- 被引次数: 13