Abstract:
There is no reasonable path to evaluate screen performance accurately based on conventional method, such as the experiential formula and engineering correlations technology. Computational fluid dynamics (CFD) with proper boundary conditions was used to find screen performance of different parameters including total pressure loss coefficient and control ability of turbulence intensity. Total pressure loss coefficient of the screen was obtained precisely using CFD with different open area ratio, Renault number, incidence angle, wires per inch, etc., especially, incidence angle equal to 30°-45°. Pressure and velocity after screen was pulsant when air flowed into the screen at certain incidence angle, and the disturbance would become weak after about 100d. The flow regime around the screen kept laminar when Re less than 40, the distance of disturbance about 50d, and that turbulence intensity was reduced on a large scale. With the increase of Re, the distance of disturbance increased to about 400d, the reduce factor of turbulence intensity became smaller than laminar regime significantly. Smaller is the open area ratio of screen before flow regime changed to instability state, bigger is reduce factor of turbulence intensity. Based on the details of numerical results, the instability most likely appears when openning to sectional area ratio less than 0.5. Total pressure loss coefficient and reduce factor of turbulence intensity increases at distinct rate with increase of wires per inch when open area ratio keeps constant. It is concluded that the optimal parameters of the screen can be obtained based on numerical results.