ZHOU Min, ZHENG Guolei, LUO Zhibo, et al. Algorithm for recognizing and constructing rib feature based on constrained Delaunay triangulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 201-210. doi: 10.13700/j.bh.1001-5965.2015.0049(in Chinese)
Citation: ZHOU Min, ZHENG Guolei, LUO Zhibo, et al. Algorithm for recognizing and constructing rib feature based on constrained Delaunay triangulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 201-210. doi: 10.13700/j.bh.1001-5965.2015.0049(in Chinese)

Algorithm for recognizing and constructing rib feature based on constrained Delaunay triangulation

doi: 10.13700/j.bh.1001-5965.2015.0049
Funds:

National Science and Technology Major Project of the Ministry of Science and Technology of China (2012ZX04010051) 

  • Received Date: 26 Jan 2015
  • Publish Date: 20 Jan 2016
  • In order to recognize the rib feature in aircraft structural parts, a recognition and construction algorithm based on the constrained Delaunay triangulation is presented. First, according to the different machining methods between the real bottom plane and the flat rib as well as the similar geometric characters of these two features, the concept of generalized bottom plane is introduced to represent the real bottom plane and the flat rib. Moreover, a representation model of the rib feature is established for further recognition and construction. Second, the constrained Delaunay triangulation method is adopted to decompose the generalized bottom plane, recognize and distinguish it as the flat rib or bottom plane, and then extract the medial axis of the flat rib. Finally, the flat rib is divided as per the medial axis while the declining rib is recognized and constructed as a sub-feature of the generalized bottom plane. The validity and efficiency of this algorithm have been verified through examples.

     

  • [1]
    谭丰.飞机结构件筋特征快速数控编程技术研究与实现[D].南京:南京航空航天大学,2010:1,9-25. TAN F.Research and implementation on rapid NC programing technology of aircraft structural parts rib feature[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010:1,9-25(in Chinese).
    [2]
    LI Y G,DING Y F,MOU W P,et al.Feature recognition technology for aircraft structural parts based on a holistic attribute adjacency graph[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2010,224(2):271-278.
    [3]
    高曙明.自动特征识别技术综述[J].计算机学报,1998,21(3):281-288. GAO S M.A survey of automatic feature recognition[J].Chinese Journal of Computers,1998,21(3):281-288(in Chinese).
    [4]
    GAO S,SHAH J J.Automatic recognition of interacting machining features based on minimal condition sub-graph[J].Computer-Aided Design,1998,30(9):727-739.
    [5]
    MARCHETTA M G,FORRADELLAS R Q.An artificial intelligence planning approach to manufacturing feature recognition[J].Computer-Aided Design,2010,42(3):248-256.
    [6]
    WOO Y,SAKURAI H.Recognition of maximal features by volume decomposition[J].Computer-Aided Design,2002,34(3):195-207.
    [7]
    SUNIL V B,AGARWAL R,PANDE S S.An approach to recognize interacting features from B-Rep CAD models of prismatic machined parts using a hybrid (graph and rule based) technique[J].Computers in Industry,2010,61(7):686-701.
    [8]
    BABIC B,NESIC N,MILJKOVIC Z.A review of automated feature recognition with rule-based pattern recognition[J].Computers in Industry,2008,59(4):321-337.
    [9]
    施建飞,李迎光,刘旭,等.基于属性边点图的飞机结构件筋特征识别方法[J].计算机集成制造系统,2014,20(3):521-529. SHI J F,LI Y G,LIU X,et al.Rib feature recognition method for aircraft structural parts based on vertex attributed adjacency graph[J].Computer Integrated Manufacturing Systems,2014,20(3):521-529(in Chinese).
    [10]
    闫海兵.飞机结构件复杂加工特征识别技术的研究与实现[D].南京:南京航空航天大学,2010:10-18. YAN H B.Research and implementation of complicated machining features recognition technology for the aircraft structural parts[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010:10-18(in Chinese).
    [11]
    YU F F,DU B R,REN W J,et al.Slicing recognition of aircraft integral panel generalized pocket[J].Chinese Journal of Aeronautics,2008,21(6):585-592.
    [12]
    于芳芳.飞机整体壁板快速数控加工编程系统关键技术研究与开发[D].北京:北京航空航天大学,2008:35-38. YU F F.Research and development of rapid NC machining programming system for aircraft integral panel[D].Beijing:Beihang University,2008:35-38(in Chinese).
    [13]
    刘少华,程朋根,史文中.约束 Delaunay 三角网生成算法研究[J].测绘通报,2004(3):4-7. LIU S H,CHENG P G,SHI W Z.Algorithm study of the constrained Delaunay triangulation generation[J].Bulletin of Surveying and Mapping,2004(3):4-7(in Chinese).
    [14]
    蒲浩,宋占峰,詹振炎.基于约束Delaunay三角剖分的道路三维建模方法[J].华中科技大学学报(自然科学版),2005,33(6):111-113. PU H,SONG Z F,ZHAN Z Y.3D-modelling for roads based on constrained Delaunay triangulation[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2005,33(6):111-113(in Chinese).
    [15]
    艾廷华,郭仁忠.基于约束Delaunay结构的街道中轴线提取及网络模型建立[J].测绘学报,2000,29(4):348-354. AI T H,GUO R Z.Extracting center-lines and building street network based on constrained Delaunay triangulation[J].Acta Geodaetica et Cartographica Sinica,2000,29(4):348-354(in Chinese).
  • Relative Articles

    [1]HU Q L,CHEN L,SHANG M S. Pedestrian attribute recognition algorithm based on multi-label adversarial domain adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2478-2487 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0386.
    [2]ZHU R N,WANG B,TANG C Y. Improvement of terrain following flight adaptive angle method under small field of view conditions[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):676-682 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0057.
    [3]ZHAO Y C,WANG S G,LIAO J,et al. Image-text aspect emotion recognition based on joint aspect attention interaction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):569-578 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0387.
    [4]ZHAO Hong-jia, ZHANG Duo-na, LU Yuan-yao, DING Wen-rui. Intelligent Recognition of Electromagnetic Signal Modulation with Embedded Domain Knowledge[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0746
    [5]LI Yun-hong, ZHANG Fu-xing, SU Xue-ping, LI Li-min, WANG Mei, LIANG Cheng-ming. Real-time UAV image segmentation algorithm with enhanced contextual feature interaction[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0830
    [6]LI J Q,FANG Q,FAN T C,et al. Fatigue detection of facial 3D physiological feature points in sleep deprivation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2753-2762 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0733.
    [7]WU T X,JI X,WANG H G,et al. Relation extraction based on fusion of graph structure and sequence features[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2763-2771 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0706.
    [8]JIANG Y H,GUO T,GONG Q,et al. Analysis and modeling method of civil aircraft emergency scenario[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):839-849 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0339.
    [9]XU Chang-hong, ZHANG Shu-sheng, HUANG Rui, LIANG Jia-chen, BIAN Rong. An adaptive NC process planning approach for pocket features driven by CAD/CAM models[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0564
    [10]ZHANG M,FAN C G,YU S Q. An elliptical damage detection method using full matrix capture for stiffened plate[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2033-2042 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0568.
    [11]ZHONG D M,GONG H Y,SUN R. An improved STPA for accurate identification of loss scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):311-323 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0226.
    [12]ZHANG Y X,WANG X J,WANG S P,et al. Mechanism of butterfly forward flight and prototype verification based on characteristic motion observation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1651-1660 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0497.
    [13]QUAN D Y,TANG Z Y,CHEN Y,et al. Radar emitter signal recognition based on MSST and HOG feature extraction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):538-547 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0338.
    [14]DU Wenbo, SHI Wanjun, LIAO Shengshi, ZHU Xi. Passenger flow forecasting of airport express based on time and feature cooperative attention[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1605-1612. doi: 10.13700/j.bh.1001-5965.2022.0321
    [15]YANG Yuchen, ZHANG Zenghui, YAN Jianing, ZHANG Jing, YANG Lingyu. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053
    [16]WU Fengfeng, LI Dongsheng, WANG Liang. Online programming technique for flexible assembly of fuselage[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 641-648. doi: 10.13700/j.bh.1001-5965.2014.0256
    [17]XU Menghui, QIU Zhiping. Parametric finite element meshing and adjustment for delta wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1659-1665. doi: 10.13700/j.bh.1001-5965.2014.0641
    [18]Jin Xianzhe, Wu Sentang. Output feedback eigenstructure assignment based on stochastic robustness analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(4): 487-491.
    [19]Zhang Yidu, Zhang Hongwei. Finite element simulation of machining deformation for aeronautical monolithic component[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 188-192.
    [20]Cao Hanqiang, Zhu Guangxi, Li Xutao, Xia Wenfang. Multi-fractal and its application in terrain character analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(12): 1182-1185.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.3 %FULLTEXT: 21.3 %META: 77.4 %META: 77.4 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.3 %其他: 5.3 %China: 0.6 %China: 0.6 %上海: 0.4 %上海: 0.4 %北京: 3.6 %北京: 3.6 %南宁: 0.2 %南宁: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %唐山: 0.2 %唐山: 0.2 %嘉兴: 0.2 %嘉兴: 0.2 %大同: 0.2 %大同: 0.2 %天津: 0.2 %天津: 0.2 %张家口: 3.2 %张家口: 3.2 %成都: 0.4 %成都: 0.4 %扬州: 0.4 %扬州: 0.4 %新乡: 0.2 %新乡: 0.2 %江门: 0.4 %江门: 0.4 %深圳: 10.9 %深圳: 10.9 %漯河: 0.4 %漯河: 0.4 %石家庄: 0.8 %石家庄: 0.8 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 14.9 %芒廷维尤: 14.9 %芝加哥: 0.2 %芝加哥: 0.2 %西宁: 55.9 %西宁: 55.9 %西安: 0.6 %西安: 0.6 %郑州: 0.6 %郑州: 0.6 %长沙: 0.2 %长沙: 0.2 %其他China上海北京南宁哥伦布唐山嘉兴大同天津张家口成都扬州新乡江门深圳漯河石家庄秦皇岛芒廷维尤芝加哥西宁西安郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1043) PDF downloads(516) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return