MA Ziyuan, GONG Huajun, WANG Xinhuaet al. Trajectory planning of unmanned helicopter formation based on improved artificial fish swarm algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 406-413. doi: 10.13700/j.bh.1001-5965.2020.0203(in Chinese)
Citation: MA Ziyuan, GONG Huajun, WANG Xinhuaet al. Trajectory planning of unmanned helicopter formation based on improved artificial fish swarm algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 406-413. doi: 10.13700/j.bh.1001-5965.2020.0203(in Chinese)

Trajectory planning of unmanned helicopter formation based on improved artificial fish swarm algorithm

doi: 10.13700/j.bh.1001-5965.2020.0203
Funds:

the Fundamental Research Funds for the Central Universities NZ2019008

More Information
  • Corresponding author: GONG Huajun. E-mail: ghj301@nuaa.edu.cn
  • Received Date: 22 May 2020
  • Accepted Date: 18 Jun 2020
  • Publish Date: 20 Feb 2021
  • To solve formation path planning problem of the Unmanned Helicopter (UH), a path planning algorithm is proposed based on improved Artificial Fish Swarm Algorithm (AFSA). An adaptive vision model of artificial fish for artificial fish swarm algorithm was put forward from two aspects of neighborhood learning and algorithm characteristics. The evolutionary strategy of fish swarm was improved on the basis of asexual reproduction. The trajectory planning model of unmanned helicopter formation was established from three aspects of planning principle, cost function and constraint conditions. The coding method and clustering strategy were improved in order to solve low searching efficiency and poor accuracy problems in route planning. An example of three-aircraft formation path planning was used to verify the proposed method. Simulation results indicate that, through the improvement of AFSA, the establishment of trajectory planning model and other measures, good unmanned helicopter formation path planning can be achieved, and meanwhile the search efficiency, convergence velocity and solution accuracy are improved significantly.

     

  • [1]
    朱黔, 周锐. 具有持续侦察时间约束的协同航路规划[J]. 北京航空航天大学学报, 2016, 42(10): 2130-2138. doi: 10.13700/j.bh.1001-5965.2015.0613

    ZHU Q, ZHOU R. Cooperative path planning with reconnaissance duration time constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2130-2138(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0613
    [2]
    喻俊松, 王琪, 徐蓉瑞. 基于改进人工鱼群算法的无人机路径规划[J]. 弹箭与制导学报, 2015, 35(3): 37-40.

    YU J S, WANG Q, XU R R. UAV path planning based on improved artificial fish swarm algorithm[J]. Journal of Missile and Guidance, 2015, 35(3): 37-40(in Chinese).
    [3]
    高晔, 周军, 谢亚恩, 等. 多无人机编队突发威胁规避路径规划算法[J]. 哈尔滨工程大学学报, 2019, 40(12): 2036-2043.

    GAO Y, ZHOU J, XIE Y E, et al. Path planning algorithm for multi UAV formation threat avoidance[J]. Journal of Harbin Engineering University, 2019, 40(12): 2036-2043(in Chinese).
    [4]
    徐钊, 胡劲文, 马云红, 等. 无人机碰撞规避路径规划算法研究[J]. 西北工业大学学报, 2019, 37(1): 100-106.

    XU Z, HU J W, MA Y H, et al. Research on collision avoidance path planning algorithm of UAV[J]. Journal of Northwest University of Technology, 2019, 37(1): 100-106(in Chinese).
    [5]
    周德云, 王鹏飞, 李枭扬, 等. 基于多目标优化算法的多无人机协同航迹规划[J]. 系统工程与电子技术, 2017, 39(4): 782-787.

    ZHOU D Y, WANG P F, LI X Y, et al. Cooperative path plan-ning of multi-UAV based on multi-objective optimization algorithm[J]. Systems Engineering and Electronics, 2017, 39(4): 782-787(in Chinese).
    [6]
    吴傲, 杨任农, 梁晓龙, 等. 基于信息素决策的无人机集群协同搜索算法[J]. 北京航空航天大学学报, 2020(2020-05-06)[2020-07-02].

    https: //www.cnki.net/kcms/detail/11.2625.V.20200506.1327.003.html. WU A, YANG R N, LIANG X L, et al.Cooperative search algorithm based on pheromone decision for UAV swarm[J].Journal of Beijing University of Aeronautics and Astronautics, 2020(2020-05-06)[2020-07-02].https: //www.cnki.net/kcms/detail/11.2625.V.20200506.1327.003.html (in Chinese).
    [7]
    程泽新, 李东生, 高杨. 一种改进遗传算法的无人机航迹规划[J]. 计算机仿真, 2019, 36(12): 31-35.

    CHENG Z X, LI D S, GAO Y. GASA drone path planning to improve mutation strategy[J]. Computer Simulation, 2019, 36(12): 31-35(in Chinese).
    [8]
    程晓明. 无人机双机协同航迹规划技术研究[D]. 南京: 南京航空航天大学, 2015.

    CHENG X M.Research on cooperative path planning technology of UAV dual aircraft[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
    [9]
    于鸿达, 王从庆, 贾峰, 等. 一种基于差分进化混合粒子群算法的多无人机航迹规划[J]. 电光与控制, 2018, 25(5): 22-25.

    YU H D, WANG C Q, JIA F, et al. Path planning for multiple UAVs based on hybrid particle swarm optimization with differential evolution[J]. Electronics Optics & Control, 2018, 25(5): 22-25(in Chinese).
    [10]
    赵克新, 黄长强, 王渊, 等. 基于混沌蚁狮算法的无人机航迹规划[J]. 飞行力学, 2018, 36(1): 93-96.

    ZHAO K X, HUANG C Q, WANG Y, et al. UAV path planning based on chaos ant lion algorithm[J]. Flight Dynamics, 2018, 36(1): 93-96(in Chinese).
    [11]
    范伟伦, 李薇, 冯杭. 基于改进RRT算法的无人机实时航迹规划[J]. 舰船电子工程, 2019, 39(2): 56-60.

    FAN W L, LI W, FENG H. UAV trajectory planning based on an improved RRT algorithm[J]. Ship Electronic Engineering, 2019, 39(2): 56-60(in Chinese).
    [12]
    WEN N, SU X, MA P, et al. Online UAV path planning in uncertain and hostile environments[J]. International Journal of Machine Learning and Cybernetics, 2015, 8(2): 1-19. doi: 10.1007/s13042-015-0339-4
    [13]
    白瑞光, 孙鑫, 陈秋双, 等. 基于Gauss伪谱法的多UAV协同航迹规划[J]. 宇航学报, 2014, 35(9): 1022-1029.

    BAI R G, SUN X, CHEN Q S, et al. Multiple UAV cooperative trajectory planning based on Gauss pseudospectral method[J]. Journal of Astronautics, 2014, 35(9): 1022-1029(in Chinese).
    [14]
    晏青, 熊峻江, 游思明. 基于动态RCS的无人机航迹实时规划[J]. 北京航空航天大学学报, 2011, 37(9): 1115-1121. https://bhxb.buaa.edu.cn/CN/Y2011/V37/I9/1115

    YAN Q, XIONG J J, YOU S M. Real-time programming method for flight path of unmanned vehicle based on dynamic RCS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1115-1121(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I9/1115
    [15]
    李晓磊, 邵之江, 钱积新. 一种基于动物自治体的寻优模式: 鱼群算法[J]. 系统工程理论与实践, 2002, 22(11): 32-38.

    LI X L, SHAO Z J, QIAN J X. An optimizing method based on autonomous animats: Fish-swarm algorithm[J]. Systems Engineering-Theory & Practice, 2002, 22(11): 32-38(in Chinese).
    [16]
    JIANG M Y, MASTORAKIS N E, YUAN D F, et al.Multi-threshold image segmentation with improved artificial fish swarm algorithm[C]//Proceedings of the European Computing Conference (ECC2009).Berlin: Springer, 2009: 133-138.
    [17]
    YAO Z G, REN Z H. Path planning for coalmine rescue robot based on hybrid adaptive artificial fish swarm algorithm[J]. International Journal of Control and Automation, 2014, 7(8): 1-12. doi: 10.14257/ijca.2014.7.8.01
    [18]
    BREAD R W, MCLAIN T W, GOODRICH M A, et al.Coordinated target assignment and intercept for unmanned air vehicles[C]//Proceedings of IEEE Transactions on Robotics and Automation.Piscataway: IEEE Press, 2002: 911-922.
    [19]
    LU J S, WANG N, CHEN J. Cooperative path planning for multiple UHs using an AIS-ACO hybrid approach[C]//2011 International Conference on Electronic and Mechanical Engineering and Information Technology.Piscataway: IEEE Press, 2011: 4301-4305.
    [20]
    KEIKHA M M. Improved simulated annealing using momentum terms[C]//2011 IEEE Second International Conference on Intelligent Systems, Modeling and Simulation. Piscataway: IEEE Press, 2011: 44-48.
    [21]
    周瑞, 黄长强, 魏政磊, 等. MP-GWO算法在多UCAV协同航迹规划中的应用[J]. 空军工程大学学报(自然科学版), 2017, 18(5): 24-29.

    ZHOU R, HUANG C Q, WEI Z L, et al. Application of MP-GWO algorithm in multi UCAV coordinated track planning[J]. Journal of Air Force Engineering University (Natural Science Edition), 2017, 18(5): 24-29(in Chinese).
  • Relative Articles

    [1]ZHANG K,YAO Y P. Optimization analysis for numerical calculation of UH model[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):546-552 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0001.
    [2]YAN S Q,YANG P,LIU W D,et al. Multi-UAV trajectory planning for complex terrain based on GPSSA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):303-313 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0984.
    [3]CHEN Mei, TANG ShengZhou, WEI LiLei, YOU YuanYuXiu. A Cluster Backbone Clustering Algorithm Based on Variable Truncation Distance[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0918
    [4]SUN Minzhe, JI Yi, DONG Fuxiang, SUN Guanghui. Dynamics analysis of spacecraft formation based on exponential integrator[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0535
    [5]WANG R,LI J M,SHI Y L,et al. Vision-based path planning algorithm of unmanned bird-repelling vehicles in airports[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1446-1453 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0717.
    [6]WAN Ru, MA Zi-yuan, GONG Hua-jun, WANG Xin-hua, ZHANG Shuai. Design of unmanned aerial vehicle formation keeping controller based on improved consistency algorithmesign[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0505
    [7]WANG F Y,MENG X Y,ZHANG H K. UAV three-dimensional path planning based on ε-level bat algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1593-1603 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0502.
    [8]WANG Jianzhong, LIANG Feida. Research on Three-Dimensional Track Planning for Multi-UAV Approach in Free Airspace Environment[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0496
    [9]ZHANG Y,YU H,YANG X X,et al. Adaptive group formation tracking-containment control for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):97-109 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0264.
    [10]WEI Ming, SUN Ya-ru, SUN Bo, WANG Sheng-jie. Cooperative planning for safe transportation routes and flight paths of UAVs with multiple dispatching centers and soft time windows[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0509
    [11]SUN Bo, ZHANG Wenpeng, WU Zexuan, SU Yebo, WEI Ming. Three-dimensional path planning of UAV based on multi-strategy golf optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0429
    [12]MA Y F,DAI S W,WANG R,et al. Nonlinear spatial K-means clustering algorithm for detection of zero-speed interval in inertial pedestrian navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2841-2850 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0764.
    [13]ZHAO Q,ZHEN Z Y,GONG H J,et al. UAV formation control based on dueling double DQN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2137-2146 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0601.
    [14]ZHANG Ying-fei, YUAN Li-yan, ZHOU Hang, HU Xiao-bing. Autonomous trajectory planning method of aircraft based on ripple spreading algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0501
    [15]WEN C,DONG W H,XIE W J,et al. Multi-UAVs 3D cooperative curve path planning method based on CEA-GA[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3086-3099 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0787.
    [16]WANG C Y,YANG L M,LI Y H. A mapping leader formation control strategy for multiple mobile robots based on two-stage sliding mode control[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3108-3114 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0792.
    [17]WANG Qian, WANG Xiang-yu, JIAO Jun, ZHANG Zi-jian, ZHANG Jian. High-altitude long-endurance solar-powered UAV 3D full coverage flight path planning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022-0748
    [18]CHEN Qingyang, XIN Hongbo, WANG Yujie, TANG Zhongnan, JIA Gaowei, ZHU Bingjie. A rapid path planning method for multiple UAVs to cooperative strike[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1145-1153. doi: 10.13700/j.bh.1001-5965.2021.0022
    [19]Zeng Jia, Shen Gongzhang, Xia Jie, Yang Lingyu. Cooperative trajectory planning for UAV towards moving target aground[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(7): 887-890.
    [20]Ding Wenrui, Li Hongguang, Li Xinjun. Multi-target tracking based on cluster min-distance data association[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(12): 1487-1490.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.6 %FULLTEXT: 21.6 %META: 75.8 %META: 75.8 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %其他: 1.2 %其他: 1.2 %Central District: 0.1 %Central District: 0.1 %三亚: 0.1 %三亚: 0.1 %上海: 0.3 %上海: 0.3 %东莞: 0.1 %东莞: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %九江: 0.1 %九江: 0.1 %保定: 0.1 %保定: 0.1 %信阳: 0.1 %信阳: 0.1 %六安: 0.4 %六安: 0.4 %北京: 4.1 %北京: 4.1 %十堰: 0.1 %十堰: 0.1 %南京: 1.7 %南京: 1.7 %厦门: 0.4 %厦门: 0.4 %周口: 0.1 %周口: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.4 %哈尔滨: 0.4 %天津: 0.4 %天津: 0.4 %威海: 0.3 %威海: 0.3 %安康: 0.3 %安康: 0.3 %宣城: 0.3 %宣城: 0.3 %张家口: 2.0 %张家口: 2.0 %德阳: 0.3 %德阳: 0.3 %惠州: 0.1 %惠州: 0.1 %成都: 0.6 %成都: 0.6 %扬州: 0.3 %扬州: 0.3 %无锡: 0.6 %无锡: 0.6 %杭州: 0.3 %杭州: 0.3 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.9 %武汉: 0.9 %江门: 0.1 %江门: 0.1 %沃思堡: 0.3 %沃思堡: 0.3 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %济宁: 0.1 %济宁: 0.1 %深圳: 11.0 %深圳: 11.0 %温州: 0.1 %温州: 0.1 %漯河: 0.4 %漯河: 0.4 %烟台: 0.3 %烟台: 0.3 %石家庄: 1.8 %石家庄: 1.8 %福州: 0.5 %福州: 0.5 %芒廷维尤: 16.0 %芒廷维尤: 16.0 %芝加哥: 0.3 %芝加哥: 0.3 %西宁: 39.5 %西宁: 39.5 %西安: 0.6 %西安: 0.6 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.3 %运城: 0.3 %通辽: 0.1 %通辽: 0.1 %郑州: 3.1 %郑州: 3.1 %镇江: 0.3 %镇江: 0.3 %长春: 0.3 %长春: 0.3 %长沙: 1.4 %长沙: 1.4 %雷德蒙德: 0.3 %雷德蒙德: 0.3 %青岛: 0.3 %青岛: 0.3 %其他其他Central District三亚上海东莞乌鲁木齐九江保定信阳六安北京十堰南京厦门周口咸阳哈尔滨天津威海安康宣城张家口德阳惠州成都扬州无锡杭州格兰特县武汉江门沃思堡沈阳济南济宁深圳温州漯河烟台石家庄福州芒廷维尤芝加哥西宁西安贵阳运城通辽郑州镇江长春长沙雷德蒙德青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views(1448) PDF downloads(138) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return