Xing Qiujun, Jiao Zongxia, Wu Shuaiet al. Hydraulic system modeling language base on finite volume and implementation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(4): 499-504. (in Chinese)
Citation: ZHANG Junyou, QI Hong, WANG Yifei, et al. Simultaneous inversion of fractal morphology and particle size distribution of soot aggregate based on light scattering intensity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 925-932. doi: 10.13700/j.bh.1001-5965.2019.0339(in Chinese)

Simultaneous inversion of fractal morphology and particle size distribution of soot aggregate based on light scattering intensity

doi: 10.13700/j.bh.1001-5965.2019.0339
Funds:

National Natural Science Foundation of China 51976044

National Natural Science Foundation of China 51806047

More Information
  • Corresponding author: QI Hong, E-mail: qihong@hit.edu.cn
  • Received Date: 28 Jun 2019
  • Accepted Date: 14 Aug 2019
  • Publish Date: 20 May 2020
  • The use of light scattering signals to achieve the simultaneous inversion of the fractal morphology and particle size distribution parameters of soot aggregates have important application value in flame radiation heat transfer simulation and pollution control. The direct model of inversion is based on the Rayleigh-Debye-Gans Polydisperse Fractal Approximation (RDG-PFA) light scattering theory. Two signal schemes were investigated: multi-angle scattering, multi-angle scattering and collimated transmittance. Before the inversion, by comparing the residual fitness value distributions of the two signal schemes, it is found that the simultaneous use of scattering and transmission signals effectively reduces the ill-posedness of the inverse problem. The inversion process is based on the Covariance Matrix Adaptive Evolutionary Strategy (CMA-ES) algorithm, which has a strong local search capability and provides a guarantee for fast and stable inversion of each target parameter. The final inversion results demonstrate the feasibility and universality of the method in a large search space. And it is also proved that the combination of multi-angle scattering and collimated transmittance effectively improves the inversion accuracy of the target parameters.

     

  • [1]
    BOND T C, BERGSTROM R W.Light absorption by carbonaceous particles:An investigative review[J].Aerosol Science and Technology, 2006, 40(1):27-67. doi: 10.1080/02786820500421521
    [2]
    李红红.航空发动机二维模型燃烧室中碳黑颗粒生成数值模拟[D].南京: 南京航空航天大学, 2008: 1-3.

    LI H H.Research on numerical simulation of soot formation in a 2-D simplified gas turbine combustor[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 1-3(in Chinese).
    [3]
    张群杰.航空发动机燃烧室中辐射换热的数值研究[D].沈阳: 沈阳航空航天大学, 2012: 1-3.

    ZHANG Q J.Numerical study of radiative transfer in areo-engine combustor[D].Shenyang: Shenyang Aerospace University, 2012: 1-3(in Chinese).
    [4]
    RAMANATHAN V, CARMICHAEL G.Global and regional climate changes due to black carbon[J].Nature Geoscience, 2008, 1(4):335-358.
    [5]
    GRAHAM T J, SCHLESINGER R B.Cardiovascular health and particulate vehicular emissions:A critical evaluation of the evidence[J].Air Quality Atmosphere & Health, 2010, 3(1):3-27. doi: 10.1007-s11869-009-0047-x/
    [6]
    LUO J, ZHANG Y, ZHANG Q, et al.Sensitivity analysis of morphology on radiative properties of soot aerosols[J].Optics Express, 2018, 26(10):A420. doi: 10.1364/OE.26.00A420
    [7]
    SORENSEN C M, CAI J, LU N.Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames[J].Applied Optics, 1992, 31(30):6547-6557. doi: 10.1364/AO.31.006547
    [8]
    IYER S S, LITZINGER T A, LEE S Y, et al.Determination of soot scattering coefficient from extinction and three-angle scattering in a laminar diffusion flame[J].Combustion & Flame, 2007, 149(1-2):206-216.
    [9]
    LINK O, SNELLING D R, THOMSON K A, et al.Development of absolute intensity multi-angle light scattering for the determination of polydisperse soot aggregate properties[J].Proceedings of the Combustion Institute, 2011, 33(1):847-854.
    [10]
    AMIN H M F, ROBERTS W L.Soot measurements by two angle scattering and extinction in an N2-diluted ethylene/air counterflow diffusion flame from 2 to 5 atm[J].Proceedings of the Combustion Institute, 2016, 36(1):861-869.
    [11]
    MOGHADDAM S T, HADWIN P J, DAUN K J.Soot aggregate sizing through multiangle elastic light scattering:Influence of model error[J].Journal of Aerosol Science, 2017, 111:36-50. doi: 10.1016/j.jaerosci.2017.06.003
    [12]
    SORENSEN C M.Light scattering by fractal aggregates:A review[J].Aerosol Science and Technology, 2001, 35(2):648-687. doi: 10.1080/02786820117868
    [13]
    MISHCHENKO M I, TRAVIS L D, LACIS A A.Scattering, absorption, and emission of light by small particles[M].Cambridge:Cambridge University Press, 2002:101-442.
    [14]
    OLTMANN H, REIMANN J, WILL S.Wide-angle light scattering (WALS) for soot aggregate characterization[J].Combustion & Flame, 2010, 157(3):516-522.
    [15]
    OLTMANN H, REIMANN J, WILL S.Single-shot measurement of soot aggregate sizes by wide-angle light scattering (WALS)[J].Applied Physics B, 2012, 106(1):171-183.
    [16]
    HANSEN N.The CMA evolution strategy: A tutorial[EB/OL].(2016-04-04)[2019-06-20].
    [17]
    DALZELL W H, SAROFIM A F.Optical constants of soot and their application to heat-flux calculations[J].Journal of Heat Transfer, 1969, 91(1):100-104. doi: 10.1115/1.3580063
  • Relative Articles

    [1]YAN Cheng, XIA Jiahao, XU Kehan, WEI Wei, QIAN Zhengming, ZENG Nianyin, WEN Zhixun. An Improved Bayesian Optimization Algorithm for Reducing the Aerodynamic Excitation Force of Turbine Rotors[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0046
    [2]WEN G,YUAN L F,WANG X D,et al. Loading optimization of irregular unit load device based on improved NSGA-Ⅱ algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):992-1004 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0149.
    [3]ZHANG Y,QIN N N. Dual-dimensional partition localization algorithm under AP virtual location perception[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1781-1792 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0274.
    [4]MA S H,ZHANG D,WANG M Y,et al. Directed interactive topology optimization design for multi-agent affine formation maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1367-1376 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0180.
    [5]YE Yi-qiao, SHEN Hai-dong, LIU Yan-bin, GAO Ze-peng, KONG Xiang, CHEN Jin-bao. Integrated design of hypersonic aircraft wing layout and mission trajectory[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0650
    [6]ZHOU Hao, TAO Tao. Single nighttime image dehazing algorithm based on maximum reflectivity prior and variational regularization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0457
    [7]FAN Haimei, WU Qianhuo, WANG Lunyao. Area approximate optimization of logic circuits based on error rate allocation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0211
    [8]TANG Jingmin, HU Cheng, SONG Yaolian, YU Guicai. NOMA-Based Joint Optimization of Trajectory and Resources for UAV-Enable Integrated Sensing and Communication[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0275
    [9]CHENG M H,LI W G,WANG Z. Identification method of ablation performance parameters of carbonized materials[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1384-1391 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0474.
    [10]YAN S Q,LIU W D,YANG P,et al. Multi group sparrow search algorithm based on K-means clustering[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):508-518 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0328.
    [11]TANG Y,DAI Q,YANG M Y,et al. Software defect prediction algorithm for intra-membrane sparrow optimizing ELM[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):643-654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0438.
    [12]YANG Y,ZHANG S,SHU T. Double light curtain-constrained hazy image restoration algorithm based on improved atmospheric scattering model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3632-3644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1010.
    [13]ZHANG K Q,ZHOU X F,MEN X H,et al. Three-dimensional integrated guidance and control design with fixed-time convergence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):842-852 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0360.
    [14]SHI X S,LIN Z Y. Fixed-time distributed convex algorithm over second-order multi-agent systems under bounded disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2951-2959 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0060.
    [15]GAO H T,CHEN Y X. A machine learning based method for lithium-ion battery state of health classification and prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3467-3475 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0154.
    [16]YAN S Q,YANG P,ZHU D L,et al. Improved sparrow search algorithm based on good point set[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2790-2798 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0730.
    [17]FAN Tao, SUN Tao, LIU Hu. Hot spot detection algorithm of photovoltaic module based on attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1304-1313. doi: 10.13700/j.bh.1001-5965.2021.0457
    [18]ZHANG Zhao, PENG Yiming, ZHOU Fuliang, WEI Xiaohui, NIE Hong, YANG Gang. Analysis and optimization of dynamic characteristics of air-cooled launcher for fold-rotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1951-1959. doi: 10.13700/j.bh.1001-5965.2021.0059
    [19]DU Xianchen, LIU Xue'ao, DONG Yang, WANG Hui, HE Tianyu, WANG Chunjie. Design and dimensional synthesis of a variable wing sweep mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2502-2509. doi: 10.13700/j.bh.1001-5965.2021.0125
    [20]WANG Weiqi, XING Yuming, ZHENG Wenyuan, HAO Zhaolong. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-060510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.6 %FULLTEXT: 27.6 %META: 70.2 %META: 70.2 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %Seattle: 0.2 %Seattle: 0.2 %上海: 0.5 %上海: 0.5 %东莞: 0.2 %东莞: 0.2 %北京: 3.4 %北京: 3.4 %十堰: 0.2 %十堰: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.3 %哥伦布: 0.3 %天津: 1.1 %天津: 1.1 %宜春: 0.3 %宜春: 0.3 %宣城: 0.3 %宣城: 0.3 %常州: 0.2 %常州: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 0.8 %张家口: 0.8 %成都: 0.2 %成都: 0.2 %扬州: 0.2 %扬州: 0.2 %杭州: 0.9 %杭州: 0.9 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.2 %武汉: 0.2 %江门: 0.6 %江门: 0.6 %沈阳: 0.2 %沈阳: 0.2 %济南: 0.2 %济南: 0.2 %深圳: 9.3 %深圳: 9.3 %漯河: 1.2 %漯河: 1.2 %石家庄: 0.5 %石家庄: 0.5 %芒廷维尤: 12.1 %芒廷维尤: 12.1 %芝加哥: 0.5 %芝加哥: 0.5 %衢州: 0.3 %衢州: 0.3 %西宁: 58.3 %西宁: 58.3 %西安: 0.5 %西安: 0.5 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.6 %运城: 0.6 %郑州: 0.2 %郑州: 0.2 %金华: 0.3 %金华: 0.3 %长沙: 0.6 %长沙: 0.6 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他Seattle上海东莞北京十堰呼和浩特哈尔滨哥伦布天津宜春宣城常州广州张家口成都扬州杭州格兰特县武汉江门沈阳济南深圳漯河石家庄芒廷维尤芝加哥衢州西宁西安贵阳运城郑州金华长沙齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views(759) PDF downloads(120) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return