Volume 48 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
MENG Guanglei, LIU Dejian, ZHOU Mingzhe, et al. Intelligent virtual opponent decision making and guidance method in short-range air combat training[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 937-949. doi: 10.13700/j.bh.1001-5965.2020.0687(in Chinese)
Citation: MENG Guanglei, LIU Dejian, ZHOU Mingzhe, et al. Intelligent virtual opponent decision making and guidance method in short-range air combat training[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 937-949. doi: 10.13700/j.bh.1001-5965.2020.0687(in Chinese)

Intelligent virtual opponent decision making and guidance method in short-range air combat training

doi: 10.13700/j.bh.1001-5965.2020.0687
Funds:

National Natural Science Foundation of China 61503255

Shenyang Support Program for Young and Middle-aged Scientific and Technological Innovation Talents RC180174

More Information
  • Corresponding author: MENG Guanglei, E-mail: mengguanglei@yeah.net
  • Received Date: 08 Dec 2020
  • Accepted Date: 10 Feb 2021
  • Publish Date: 20 Jun 2022
  • To train pilots' short-range air combat skills, the traditional way based on flight simulation technology is to have multiple pilots operate multiple fighter simulators at the same time. If an intelligent virtual opponent is used to assist pilots in confrontation training, not only could the normal training process without other pilots be guaranteed, but the training cost could also be reduced to a great extent. In this paper, an integrated method based on dynamic Bayesian network (DBN) and constrained gradient algorithm is proposed to realize autonomous decision making and space occupancy guidance for intelligent virtual opponents in the attack and defense game during short-range air combat training. A dynamic Bayesian network model for short-range air combat decision making is established in combination with the space occupying situation, the fire control attack area and the identification results of maneuvering actions. This model realizes an intelligent selection of occupancy guidance index in accordance with the dynamic battlefield environment. A target trajectory prediction model is built for each type of maneuvers identified online to obtain the real-time prediction of the target trajectory. With the occupancy guidance index, target trajectory predication, and the flight performance constraints in consideration, a constraint gradient method is used to calculate the optimal occupancy guidance quantity of the intelligent virtual opponent. Thus, a seamless combination of space occupancy decision and guidance quantity calculation for intelligent virtual opponent is achieved. The simulation results of short-range air combat show that the proposed method can realize rational autonomous decision making and space occupancy guidance for intelligent virtual opponent, overcome the problem of solidifying the maneuver mode in traditional methods, and thus have better real time and optimization performance.

     

  • loading
  • [1]
    耿振余, 刘思彤, 李德龙. 嵌入式空战训练中虚拟智能对手的生成研究[J]. 现代防御技术, 2014, 42(3): 172-177. doi: 10.3969/j.issn.1009-086x.2014.03.030

    GENG Z Y, LIU S T, LI D L. Generating virtual intelligent adversary in embedded training of air combat counterwork[J]. Modern Defence Technology, 2014, 42(3): 172-177(in Chinese). doi: 10.3969/j.issn.1009-086x.2014.03.030
    [2]
    陈斌, 王江, 王阳. 战斗机嵌入式训练系统中的智能虚拟陪练[J]. 航空学报, 2020, 41(6): 366-380.

    CHEN B, WANG J, WANG Y. Intelligent virtual training partn-er in embedded training system of fighter[J]. Acta Aeronauticaet Astronautica Sinica, 2020, 41(6): 366-380(in Chinese).
    [3]
    RODIN E Y, LIROV Y, MITTNIK S, et al. Artificial intelligence in air combat games[J]. Computers and Mathematics with Applications, 1987, 3(1): 261-274.
    [4]
    徐光达, 吕超, 王光辉, 等. 基于双矩阵对策的UCAV空战自主机动决策研究[J]. 舰船电子工程, 2017, 37(11): 24-28. doi: 10.3969/j.issn.1672-9730.2017.11.007

    XU G D, LV C, WANG G H, et al. Research on UCAV autono-mous air combat maneuvering decision-making based on bi-matrix game[J]. Ship Electronic Engineering, 2017, 37(11): 24-28(in Chinese). doi: 10.3969/j.issn.1672-9730.2017.11.007
    [5]
    SCHREIER M, WILLERT V, ADAMY J. An integrated approa-ch to maneuver-based trajectory prediction and criticality ass-essment in arbitrary road environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2751-2766. doi: 10.1109/TITS.2016.2522507
    [6]
    ZHONG L, TONG M A, ZHONG W. Sequential maneuvering decisions based on multi-stage influence diagram in air combat[J]. Journal of Systems Engineering and Electronics, 2007, 18(3): 551-555. doi: 10.1016/S1004-4132(07)60128-5
    [7]
    VIRTANEN K, KARELAHTI J, RAIVIO T. Modeling air comb-at by a moving horizon influence diagram game[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5): 1080-1091. doi: 10.2514/1.17168
    [8]
    钟麟, 佟明安, 钟卫. 影响图对策在多机协同空战中的应用[J]. 北京航空航天大学学报, 2007, 33(4): 450-453. doi: 10.3969/j.issn.1001-5965.2007.04.017

    ZHONG L, TONG M A, ZHONG W. Application of multistage influence diagram game theory for multiple cooperative air combat[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(4): 450-453(in Chinese). doi: 10.3969/j.issn.1001-5965.2007.04.017
    [9]
    VIRTANEN K, RAIVIO T, RAIMO P H. Modeling pilot's seq-uential maneuvering decisions by a multistage influence diagram[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 665-677. doi: 10.2514/1.11167
    [10]
    常勇, 姜长生, 陈志伟. 基于模糊神经网络的多机多目标空战决策[J]. 电光与控制, 2011, 18(4): 13-17. doi: 10.3969/j.issn.1671-637X.2011.04.004

    CHANG Y, JIANG C S, CHEN Z W. Decision-making based on fuzzy neural network for air combat of multi-aircraft against multi-target[J]. Electronics Optics & Control, 2011, 18(4): 13-17(in Chinese). doi: 10.3969/j.issn.1671-637X.2011.04.004
    [11]
    钟麟, 佟明安, 张圣云. 粗糙集-神经网络集成在编队空战中的应用[J]. 系统工程与电子技术, 2006, 28(6): 881-884. doi: 10.3321/j.issn:1001-506X.2006.06.027

    ZHONG L, TONG M A, ZHANG S Y. Cooperative team air combat decision based on integration of rough sets and neural networks[J]. Systems Engineering and Electronics, 2006, 28(6): 881-884(in Chinese). doi: 10.3321/j.issn:1001-506X.2006.06.027
    [12]
    MCGREW J S, HOW J P, WILLIAMS B. Air-combat strategy using approximate dynamic programming[J]. Journal of Guida-nce, Control, and Dynamics, 2010, 33(5): 1641-1654. doi: 10.2514/1.46815
    [13]
    MA Y F, MA X L, SONG X. A case study on air combat decisi-on using approximated dynamic programming[J]. Mathematical Problems in Engineering, 2014, 10(4): 115-122.
    [14]
    李惠峰, 易文峰, 程晓明. 基于近似动态规划的目标追踪控制算法[J]. 北京航空航天大学学报, 2019, 45(3): 597-605. doi: 10.13700/j.bh.1001-5965.2018.0353

    LI H F, YI W F, CHENG X M. Target tracking control algorithm based on approximate dynamic programming[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 597-605(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0353
    [15]
    黄长强, 赵克新, 韩邦杰, 等. 一种近似动态规划的无人机机动决策方法[J]. 电子与信息学报, 2018, 40(10): 2447-2452.

    HUANG C Q, ZHAO K X, HAN B J, et al. Maneuvering decision-making method of UAV based on approximate dynamic programming[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2447-2452(in Chinese).
    [16]
    高阳阳, 余敏建, 韩其松, 等. 基于改进共生生物搜索算法的空战机动决策[J]. 北京航空航天大学学报, 2019, 45(3): 429-436. doi: 10.13700/j.bh.1001-5965.2018.0395

    GAO Y Y, YU M J, HAN Q S, et al. Air combat maneuver decision-making based on improved symbiotic organisms serach algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 429-436(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0395
    [17]
    IMADO F, KURODA T. Family of local solutions in a missile-aircraft differential game[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2): 583-591. doi: 10.2514/1.48345
    [18]
    PARK H, LEE B Y, TAHK M J, et al. Differential game based air combat maneuver generation using scoring function matrix[J]. International Journal of Aeronautical and Space Sciences, 2016, 17(2): 204-213. doi: 10.5139/IJASS.2016.17.2.204
    [19]
    傅莉, 王晓光. 无人战机近距空战微分对策建模研究[J]. 兵工学报, 2012, 33(10): 1210-1216.

    FU L, WANG X G. Research on close air combat modeling of differential games for unmanned combat air vehicles[J]. Acta Armamentarii, 2012, 33(10): 1210-1216(in Chinese).
    [20]
    HUANG C Q, DONG K S, HUANG H Q, et al. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization[J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 86-97. doi: 10.21629/JSEE.2018.01.09
    [21]
    付昭旺, 李战武, 强晓明, 等. 基于滚动时域控制的战斗机空战机动决策[J]. 电光与控制, 2013, 20(3): 20-24. doi: 10.3969/j.issn.1671-637X.2013.03.005

    FU Z W, LI Z W, QIANG X M, et al. Tactical decision-making method based on receding horizon control for air combat[J]. Electronics Optics & Control, 2013, 20(3): 20-24(in Chinese). doi: 10.3969/j.issn.1671-637X.2013.03.005
    [22]
    曲婉嘉, 周兴旺, 刘颖. 基于动态贝叶斯网络的防空雷达毁伤效果评估研究[J]. 电子设计工程, 2016, 24(6): 121-124. doi: 10.3969/j.issn.1674-6236.2016.06.037

    QU W J, ZHOU X W, LIU Y. Research on damage ecaluation of air defense radar based on Bayesian network[J]. Electronic Design Engineering, 2016, 24(6): 121-124(in Chinese). doi: 10.3969/j.issn.1674-6236.2016.06.037
    [23]
    孟光磊, 张慧敏, 朴海音, 等. 自动化飞行训练评估中的战机机动动作识别[J]. 北京航空航天大学学报, 2020, 46(7): 1267-1274. doi: 10.13700/j.bh.1001-5965.2019.0445

    MENG G L, ZHANG H M, PIAO H Y, et al. Recognition of fighter maneuver in automatic flight training evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1267-1274(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0445
    [24]
    张洪钺, 王青. 最优控制理论与应用[M]. 北京: 高等教育出版社, 2006: 127-135.

    ZHANG H Y, WANG Q. Optimal control theory and application[M]. Beijing: Higher Education Press, 2006: 127-135(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article views(787) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return