Citation: | WU Zongshou, WANG Lixin, LI Xinsan, et al. An improved PSO-ARMA method for temperature error modeling of hemispherical resonator gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1050-1056. doi: 10.13700/j.bh.1001-5965.2020.0710(in Chinese) |
To reduce the drift of hemispherical resonator gyroscope (HRG) caused by temperature effect, a temperature drift compensation model is established, which compensates the deterministic drift related to temperature. An improved PSO-ARMA modeling method is proposed to compensate the uncertain drift. This method introduces the decreasing inertia weight strategy into the opposition-based learning particle swarm optimization (PSO) algorithm, improving the algorithm's ability to jump out of the local and converge fast. In the modeling process, the improved PSO algorithm is used to optimize the ARMA parameters, thus improving the model accuracy. The experimental data of HRG temperature rise are used for verification. After the model compensation, the output accuracy of HRG can reach 0.07°/h, which is twice as high as that of traditional ARMA modeling method.
[1] |
刘付成, 赵万良, 宋丽君. 半球谐振陀螺惯性敏感器及其空间应用[M]. 北京: 中国宇航出版社, 2019.
LIU F C, ZHAO W L, SONG L J. Inertial sensor of hemispherical resonator gyroscope and its space application[M]. Beijing: China Aerospace Press, 2019(in Chinese).
|
[2] |
樊尚春, 刘广玉. 半球谐振陀螺振子耦合振动的近似解析分析[J]. 北京航空航天大学学报, 1997, 23(6): 708-713.
FAN S C, LIU G Y. Approximately analysing of coupling vibration of resonator for HRG[J]. Journal of Beijing University of Aeronautics and Astronautics, 1997, 23(6): 708-713(in Chinese).
|
[3] |
刘吉利, 李建朋, 武志忠, 等. 半球谐振陀螺零偏温度漂移的自补偿[J]. 空间控制技术与应用, 2018, 44(1): 69-73.
LIU J L, LI J P, WU Z Z, et al. Self-compensation of bias temperature drift in hemispherical resonator gyro[J]. Aerospace Control and Application, 2018, 44(1): 69-73(in Chinese).
|
[4] |
YATSENKO Y A, CHIKOVANI V V, YANCHUK A N. Study of thermal drift model for metallic cylindrical coriolis vibratory gyro[C]//10th Saint Petersburg International Conference on Integrated Navigation Systems, 2003: 337-339.
|
[5] |
刘宇, 路永乐, 黎蕾蕾. 固态振动陀螺与导航技术[M]. 北京: 中国宇航出版社, 2010.
LIU Y, LU Y L, LI L L. Solid-state vibration gyro and navigation technology[M]. Beijing: China Aerospace Press, 2010(in Chinese).
|
[6] |
周小刚, 汪立新, 佘嫱, 等. 半球谐振陀螺温度补偿与实验研究[J]. 宇航学报, 2010, 31(4): 1083-1087. doi: 10.3873/j.issn.1000-1328.2010.04.023
ZHOU X G, WANG L X, SHE Q, et al. HRG temperature compensation and experiment research[J]. Journal of Astronautics, 2010, 31(4): 1083-1087(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.04.023
|
[7] |
李广胜, 蒋英杰, 孙志强, 等. 基于AR多变量模型的半球谐振陀螺温度漂移建模[J]. 传感技术学报, 2009, 22(10): 1442-1445. doi: 10.3969/j.issn.1004-1699.2009.10.015
LI G S, JIANG Y J, SUN Z Q, et al. Modelling temperature drift of HRG based on AR multi-variable model[J]. Chinese Journal of Sensors and Actuators, 2009, 22(10): 1442-1445(in Chinese). doi: 10.3969/j.issn.1004-1699.2009.10.015
|
[8] |
WANG X, WU W Q, FANG Z, et al. Temperature drift compensation for hemispherical resonator gyro based on natural frequency[J]. Sensors, 2012, 12(5): 6434-6446. doi: 10.3390/s120506434
|
[9] |
周强, 覃施甦, 方海斌, 等. 半球谐振陀螺温度特性及补偿分析[J]. 压电与声光, 2015, 37(5): 818-820.
ZHOU Q, QIN S S, FANG H B, et al. The temperature characteristic and compensating analysis of HRG[J]. Piezoelectrics & Acoustooptics, 2015, 37(5): 818-820(in Chinese).
|
[10] |
任顺清, 赵洪波. 谐振子密度偏差引起的频率裂解的分析[J]. 哈尔滨工业大学学报, 2012, 44(3): 13-16.
REN S Q, ZHAO H B. Analysis of frequency cracking of resonator under the density error[J]. Journal of Harbin Institute of Technology, 2012, 44(3): 13-16(in Chinese).
|
[11] |
ANAND B, AAKASH I, AKSHAY, et al. Improvisation of particle swarm optimization algorithm[C]//2014 International Conference on Signal Processing and Integrated Networks (SPIN). Piscataway: IEEE Press, 2014: 20-24.
|
[12] |
肖素琼, 罗可. 具备反向学习和局部学习能力的磷虾群算法[J]. 计算机工程与应用, 2018, 54(18): 34-39.
XIAO S Q, LUO K. Krill herd optimization algorithm with reverse-learning and local-learning behavior[J]. Computer Engineering and Applications, 2018, 54(18): 34-39(in Chinese).
|
[13] |
宋刚, 张云峰, 包芳勋, 等. 基于粒子群优化LSTM的股票预测模型[J]. 北京航空航天大学学报, 2019, 45(12): 2533-2542. doi: 10.13700/j.bh.1001-5965.2019.0388
SONG G, ZHANG Y F, BAO F X, et al. Stock prediction model based on particle swarm optimization LSTM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2533-2542(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0388
|
[14] |
TIZHOOSH H R. Opposition-based learning: A new scheme for machine intelligence[C]//International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06). Piscataway: IEEE Press, 2005: 695-701.
|
[15] |
韩江, 闵杰. 基于精英反向学习的烟花爆炸式免疫遗传算法[J]. 合肥工业大学学报(自然科学版), 2020, 43(4): 433-437. doi: 10.3969/j.issn.1003-5060.2020.04.001
HAN J, MIN J. A fireworks explosive immune genetic algorithm based on elite opposition-based learning[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(4): 433-437(in Chinese). doi: 10.3969/j.issn.1003-5060.2020.04.001
|
[16] |
张超. 一种精英反向学习的花授粉算法[J]. 西安工程大学学报, 2017, 31(6): 847-856.
ZHANG C. A flower pollination algorithm based on elite opposition-based learning[J]. Journal of Xi'an Polytechnic University, 2017, 31(6): 847-856(in Chinese).
|
[17] |
SHI Y, EBERHART R. A modified particle swarm optimizer[C]// 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence. Piscataway: IEEE Press, 1998: 69-73.
|