Citation: | JIA Yuan, CAO Xiang, WU Jianghaoet al. Influence of suction flow control on aerodynamic characteristics of blended-wing-body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1065-1071. doi: 10.13700/j.bh.1001-5965.2020.0715(in Chinese) |
This paper studies a blended-wing-body aircraft with distributed propulsion, explores the influence of suction control (with suction position and suction momentum variables) on the aerodynamic characteristics of aircraft in take-off and cruise state and explains the mechanism of the influence of suction flow control on the aerodynamic characteristics of the blended-wing-body aircraft. The results show that under the condition of high take-off attack angle, compared with the non-aspirated state, the maximum lift coefficient of the aircraft is increased by 7.16% when the aspirator is located in the outer wing segment (chord position being 0.05
[1] |
索欣诗. 翼身融合布局大型客机总体方案综合分析评价与优化[D]. 南京: 南京航空航天大学, 2017: 1-20.
SUO X S. Integrated analysis, evaluation and optimization in conceptual design of blended wing body commercial aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 1-20(in Chinese).
|
[2] |
闫万方, 吴江浩, 张艳来. 分布式推进关键参数对BWB飞机气动特性影响[J]. 北京航空航天大学学报, 2015, 41(6): 1055-1065. doi: 10.13700/j.bh.1001-5965.2014.0390
YAN W F, WU J H, ZHANG Y L. Effects of distributed propulsion crucial variables on aerodynamic performance of blended wing body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1055-1065(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0390
|
[3] |
LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1): 10-25. doi: 10.2514/1.9084
|
[4] |
朱自强, 王晓璐, 吴宗成, 等. 民机的一种新型布局形式: 翼身融合体飞机[J]. 航空学报, 2008, 29(1): 49-59. doi: 10.3321/j.issn:1000-6893.2008.01.007
ZHU Z Q, WANG X L, WU Z C, et al. A new type of transport-Blended wing body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 49-59(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.01.007
|
[5] |
邓海强. 翼身融合布局无人机总体多学科设计优化研究[D]. 南京: 南京航空航天大学, 2017: 6-17.
DENG H Q. Multidisciplinary design optimization for preliminary design of unmanned aerial vehicle with blended wing body[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 6-17(in Chinese).
|
[6] |
王刚, 张彬乾, 张明辉, 等. 翼身融合民机总体气动技术研究进展与展望[J]. 航空学报, 2019, 40(9): 623046.
WANG G, ZHANG B Q, ZHANG M H, et al. Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623046(in Chinese).
|
[7] |
刘铁中. 三翼面布局飞机低速气动性能的试验研究[D]. 北京: 北京航空航天大学, 1999: 6-12.
LIU T Z. Experimental research on low-speed aerodynamic performance of aircraft with three wings[D]. Beijing: Beihang University, 1999: 6-12(in Chinese).
|
[8] |
于哲慧, 刘沛清. CJ818高升力构型吹吸气流动控制研究[J]. 民用飞机设计与研究, 2009(S1): 12-19.
YU Z H, LIU P Q. Research on blowing and suction flow control of CJ818 high-lift configuration[J]. Civil Aircraft Design and Research, 2009(S1): 12-19(in Chinese).
|
[9] |
朱佳晨, 史志伟, 孙琪杰, 等. 基于主动流动控制技术的高超声速翼型前段气动特性的数值模拟研究[C]//第十届全国流体力学学术会议, 2018.
ZHU J C, SHI Z W, SUN Q J, et al. Numerical simulation research on the aerodynamic characteristics of hypersonic airfoil front section based on active flow control technology[C]//The 10th National Conference on Fluid Mechanics, 2018(in Chinese).
|
[10] |
OGINO K, MAMORI H, FUKUSHIMA N, et al. Direct numerical simulation of Taylor-Couette turbulent flow controlled by a traveling wave-like blowing and suction[J]. International Journal of Heat and Fluid Flow, 2019, 80: 108463. doi: 10.1016/j.ijheatfluidflow.2019.108463
|
[11] |
张志勇, 王团团, 陈志华, 等. 低雷诺数下吹吸气射流对NACA0012翼型气动性能的影响[J]. 空气动力学学报, 2020, 38(1): 58-65.
ZHANG Z Y, WANG T T, CHEN Z H, et al. The effect of blowing/suction jet on the aerodynamic performance of airfoil NACA0012 at low Reynolds number[J]. Acta Aerodynamica Sinica, 2020, 38(1): 58-65(in Chinese).
|
[12] |
贲宝佳. 一种新型吹吸气相结合的方法控制流动分离[J]. 科技创新与应用, 2017(2): 56.
BEN B J. A new method of combined blowing and suction to control flow separation[J]. Technology Innovation and Application, 2017(2): 56(in Chinese).
|
[13] |
HUANG L, HUANG P G, LEBEAU R P, et al. Numerical study of blowing and suction control mechanism on NACA0012 airfoil[J]. Journal of Aircraft, 2004, 41(5): 1005-1013. doi: 10.2514/1.2255
|
[14] |
GENC M, KAYNAK V. Control of flow separation and transition point over an aerofoil at low Re number using simultaneous blowing and suction: AIAA 2009-3672[R]. Reston: AIAA, 2009.
|
[15] |
AGARWAL G, REDINIOTIS O, TRAUB L. An experimental investigation on the effects of pulsed air blowing separation control on NACA0015: AIAA 2008-737[R]. Reston: AIAA, 2008.
|
[16] |
WAHIDI R, BRIDGES D. Effects of distributed suction on an airfoil at low Reynolds number[C]//40th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2010.
|