Volume 48 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
LIU Mingjie, WU Qingshan, YAN Hao, et al. Progress and challenges of bionic drag reduction surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1782-1790. doi: 10.13700/j.bh.1001-5965.2022.0295(in Chinese)
Citation: LIU Mingjie, WU Qingshan, YAN Hao, et al. Progress and challenges of bionic drag reduction surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1782-1790. doi: 10.13700/j.bh.1001-5965.2022.0295(in Chinese)

Progress and challenges of bionic drag reduction surfaces

doi: 10.13700/j.bh.1001-5965.2022.0295
Funds:

Ye Qisun Science Foundation of National Natural Science Foundation of China U2141251

National Natural Science Foundation of China 22175010

National Natural Science Foundation for Distinguished Young Scholars 21725401

More Information
  • Corresponding author: LIU Mingjie, E-mail: liumj@buaa.edu.cn
  • Received Date: 29 Apr 2022
  • Accepted Date: 02 Jun 2022
  • Publish Date: 02 Jun 2022
  • Drag reduction surfaces have attracted more and more attention due to their great potentiality and wide applications in marine ships, pipeline transportation, aircraft, and national defense and military. Interestingly, animals and plants in nature have evolved many unique shapes or surface structures which show excellent drag reduction performance. In this review, we introduce the recent drag reduction technologies of compliant, microstructural, and superhydrophobic surfaces inspired by dolphin surfaces, shark skins, and lotus leaves, respectively. We summarize the research progress, mechanism and challenges of these technologies, and provide an overview of the current research on bionic drag reduction surfaces, and its future perspectives.

     

  • loading
  • [1]
    TIAN G, FAN D, FENG X, et al. Thriving artificial underwater drag-reduction materials inspired from aquatic animals: Progresses and challenges[J]. RSC Advances, 2021, 11(6): 3399-3428. doi: 10.1039/D0RA08672J
    [2]
    CHOI H, PARK H, SAGONG W, et al. Biomimetic flow control based on morphological features of living creatures[J]. Physics of Fluids, 2012, 24(12): 121302. doi: 10.1063/1.4772063
    [3]
    GAD-EL-HAK M. Flow control: The future[J]. Journal of Aircraft, 2001, 38(3): 402-402. doi: 10.2514/2.2796
    [4]
    KROO I. Drag due to lift: Concepts for prediction and reduction[J]. Annual Review of Fluid Mechanics, 2001, 33(1): 587-617. doi: 10.1146/annurev.fluid.33.1.587
    [5]
    SINDAGI S, VIJAYAKUMAR R. Succinct review of MBDR/BDR technique in reducing ship's drag[J]. Ships and Offshore Structures, 2021, 16(9): 968-979. doi: 10.1080/17445302.2020.1790296
    [6]
    KORNILOV V I, BOIKO A V. Advances and challenges in periodic forcing of the turbulent boundary layer on a body of revolution[J]. Progress in Aerospace Sciences, 2018, 98: 57-73. doi: 10.1016/j.paerosci.2018.03.005
    [7]
    侯辉昌. 减阻力学[M]. 北京: 科学出版社, 1987.

    HOU H C. Drag reduction mechanics[M]. Beijing: Science Press, 1987(in Chinese).
    [8]
    LANG A W, JONES E M, AFROZ F. Separation control over a grooved surface inspired by dolphin skin[J]. Bioinspiration & Biomimetics, 2017, 12(2): 1-35.
    [9]
    AFROZ F, LANG A, HABEGGER M L, et al. Experimental study of laminar and turbulent boundary layer separation control of shark skin[J]. Bioinspiration & Biomimetics, 2016, 12(1): 016009. doi: 10.1007/978-1-4020-6472-2_31
    [10]
    NEINHUIS C, BARTHLOTT W. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. doi: 10.1007/s004250050096
    [11]
    CARPENTER P W. Status of transition delay using compliant walls[M]//BUSHNELL D M, HEFNER J N. Viscous drag reduction in boundary layers. Reston: AIAA, 1990: 79-113.
    [12]
    WAINWRIGHT D K, FISH F E, INGERSOLL S, et al. How smooth is a dolphin? The ridged skin of odontocetes[J]. Biology Letters, 2019, 15(7): 20190103. doi: 10.1098/rsbl.2019.0103
    [13]
    KRAMER M O. Boundary layer stabilization by distributed damping[J]. Journal of the American Society for Naval Engineers, 1960, 72(1): 25-34. doi: 10.2514/8.8380
    [14]
    CARPENTER P W, GARRAD A D. The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities[J]. Journal of Fluid Mechanics, 1985, 155: 465-510. doi: 10.1017/S0022112085001902
    [15]
    GAD-EL-HAK M, BLACKWELDER R F, RILEY J J. On the interaction of compliant coatings with boundary-layer flows[J]. Journal of Fluid Mechanics, 1984, 140: 257-280. doi: 10.1017/S0022112084000598
    [16]
    TSIGKLIFIS K, LUCEY A D. The interaction of Blasius boundary-layer flow with a compliant panel: Global, local and transient analyses[J]. Journal of Fluid Mechanics, 2017, 827: 155-193. doi: 10.1017/jfm.2017.453
    [17]
    NAGY P T, PAÁL G. The effect of spanwise and streamwise flexible coating on the boundary layer transition[J]. Journal of Fluids and Structures, 2018, 110: 103521.
    [18]
    GROSSKREUTZ R. An attempt to control boundary-layer turbulence with nonisotropic compliant walls[J]. University Science Journal (Dar es Salaam), 1975, 1: 67-73. https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/active-control-of-turbulent-boundary-layers/205D9F5AB85F41939C13DBCB8E3ACC96
    [19]
    DUNCAN J H, WAXMAN A M, TULIN M P. The dynamics of waves at the interface between a viscoelastic coating and a fluid flow[J]. Journal of Fluid Mechanics, 1985, 158: 177-197. doi: 10.1017/S0022112085002609
    [20]
    YEO K S. The stability of boundary-layer flow over single- and multi-layer viscoelastic walls[J]. Journal of Fluid Mechanics, 1988, 196: 359-408. doi: 10.1017/S0022112088002745
    [21]
    GAD-EL-HAK M. The response of elastic and viscoelastic surfaces to a turbulent boundary layer[J]. Journal of Applied Mechanics, 1986, 53(1): 206-212. doi: 10.1115/1.3171714
    [22]
    CARPENTER P W. The optimization of compliant surfaces for transition delay[M]//LIEPMANN H W, NARASIMHA R. Turbulence management and relaminarisation. Berlin: Springer, 1988: 305-313.
    [23]
    PU X, LI G, LIU Y. Progress and perspective of studies on biomimetic shark skin drag reduction[J]. ChemBioEng Reviews, 2016, 3(1): 26-40. doi: 10.1002/cben.201500011
    [24]
    LI W, WEAVER J C, LAUDER G V. Biomimetic shark skin: Design, fabrication and hydrodynamic function[J]. Journal of Experimental Biology, 2014, 217(10): 1656-1666. doi: 10.1242/jeb.097097
    [25]
    BECHERT D W, BRUSE M, HAGE W. Experiments with three-dimensional riblets as an idealized model of shark skin[J]. Experiments in Fluids, 2000, 28(5): 403-412. doi: 10.1007/s003480050400
    [26]
    YU C, LIU M, LEI J, et al. Bio-inspired drag reduction: From nature organisms to artificial functional surfaces[J]. Giant, 2020, 2: 100017. doi: 10.1016/j.giant.2020.100017
    [27]
    SAMUEL M, BHARAT B. Modeling and optimization of shark-inspired riblet geometries for low drag applications[J]. Journal of Colloid and Interface Science, 2016, 474: 206-215. doi: 10.1016/j.jcis.2016.04.019
    [28]
    WALSH M J. Riblets as a viscous drag reduction technique[J]. AIAA Journal, 1983, 21(4): 485-486. doi: 10.2514/3.60126
    [29]
    BACHER E V, SMITH C R. A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modifications: AIAA 1985-548[R]. Reston: AIAA, 1985.
    [30]
    BECHERT D W, BARTENWERFER M. The viscous flow on surfaces with longitudinal ribs[J]. Journal of Fluid Mechanics, 1989, 206: 105-129. doi: 10.1017/S0022112089002247
    [31]
    BECHERT D W, BRUSE M, HAGE W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338: 59-87. doi: 10.1017/S0022112096004673
    [32]
    WEN L, WEAVER J C, LAUDER G V. Biomimetic shark skin: Design, fabrication and hydrodynamic function[J]. Journal of Experimental Biology, 2014, 217(10): 1656-1666. doi: 10.1242/jeb.097097
    [33]
    MIYAZAKI M, HIRAI Y, MORIYA H, et al. Biomimetic riblets inspired by sharkskin denticles: Digitizing, modeling and flow simulation[J]. Journal of Bionic Engineering, 2018, 15(6): 999-1011. doi: 10.1007/s42235-018-0088-7
    [34]
    BOOMSMA A, SOTIROPOULOS F. Direct numerical simulation of sharkskin denticles in turbulent channel flow[J]. Physics of Fluids, 2016, 28(3): 59-87. doi: 10.1063/1.4942474
    [35]
    LANG A W, BRADSHAW M T, SMITH J A, et al. Movable shark scales act as a passive dynamic micro-roughness to control flow separation[J]. Bioinspiration & Biomimetics, 2014, 9(3): 036017.
    [36]
    TIAN G Z, FENG X M. Focus on bioinspired textured surfaces toward fluid drag reduction: Recent progresses and challenges[J]. Advanced Engineering Materials, 2022, 24: 2100696. doi: 10.1002/adem.202100696
    [37]
    QUÉRÉ D. Non-sticking drops[J]. Reports on Progress in Physics, 2005, 68(11): 2495-2532. doi: 10.1088/0034-4885/68/11/R01
    [38]
    WENZEL R Z. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. doi: 10.1021/ie50320a024
    [39]
    CASSIE A B D, BAXTER S. Wettablity of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. doi: 10.1039/tf9444000546
    [40]
    KIM J, KIM C J. Nanostructured surfaces for dramatic reduction of flow resistance in droplet-based microfluidics[C]//Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical System. Piscataway: IEEE Press, 2002: 479-482.
    [41]
    LAUGA E, STONE H A. Effective slip in pressure-driven Stokes flow[J]. Journal of Fluid Mechanics, 2003, 489: 55-77. doi: 10.1017/S0022112003004695
    [42]
    HENOCH C, KRUPENKIN T N, KOLODNER P, et al. Turbulent drag reduction using superhydrophobic surfaces: AIAA 2006-3192[R]. Reston: AIAA, 2006.
    [43]
    DANIELLO R J, WATERHOUSE N E, ROTHSTEIN J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21(8): 085103. doi: 10.1063/1.3207885
    [44]
    WOOLFORD B, PRINCE J, MAYNES D, et al. Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls[J]. Physics of Fluids, 2009, 21(8): 3395-3478. doi: 10.1063/1.3213607
    [45]
    ALJALLIS E, SARSHAR M A, DATLA R, et al. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow[J]. Physics of Fluids, 2013, 25(2): 351-412. doi: 10.1063/1.4816362
    [46]
    SRINIVASAN S, KLEINGARTNER J A, GILBERT J B, et al. Sustainable drag reduction in turbulent taylor-couette flows by depositing sprayable superhydrophobic surfaces[J]. Physical Review Letters, 2015, 114(1): 014501. doi: 10.1103/PhysRevLett.114.014501
    [47]
    XU M, GRABOWSKI A, YU N, et al. Superhydrophobic drag reduction for turbulent flows in open water[J]. Physical Review Applied, 2020, 13: 034056. doi: 10.1103/PhysRevApplied.13.034056
    [48]
    NETO C, EVANS D R, BONACCURSO E, et al. Boundary slip in Newtonian liquids: A review of experimental studies[J]. Reports on Progress in Physics, 2005, 68(12): 2859. doi: 10.1088/0034-4885/68/12/R05
    [49]
    LEE C, CHOI C H, KIM C J. Superhydrophobic drag reduction in laminar flows: A critical review[J]. Experiments in Fluids, 2016, 57(12): 1-20. doi: 10.1007/s00348-016-2264-z
    [50]
    HYUNGMIN P, CHANG H C, KIM C J. Superhydrophobic drag reduction in turbulent flows: A critical review[J]. Experiments in Fluids, 2021, 62(11): 229. doi: 10.1007/s00348-021-03322-4
    [51]
    PARK H, PARK H, KIM J. A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow[J]. Physics of Fluids, 2013, 25(11): 110815. doi: 10.1063/1.4819144
    [52]
    BARTHLOTT W, SCHIMMEL T, WIERSCH S, et al. The salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water[J]. Advanced Materials, 2010, 22(21): 2325-2328. doi: 10.1002/adma.200904411
    [53]
    CARLBORG C F, DO-QUANG M, STEMME G, et al. Continuous flow switching by pneumatic actuation of the air lubrication layer on superhydrophobic microchannel walls[C]//Proceedings of the 21st IEEE International Conference on Micro Electro Mechanical systems. Piscataway: IEEE Press, 2008: 599-602.
    [54]
    LEE C, KIM C J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction[J]. Physical Review Letters, 2011, 106(1): 014502. doi: 10.1103/PhysRevLett.106.014502
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(623) PDF downloads(123) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return