Volume 50 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
LIU S S,LEI X R,SONG Z Y,et al. Influence of unloading groove opening of port plate of plunger pumps on transient flow field characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2919-2929 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0713
Citation: LIU S S,LEI X R,SONG Z Y,et al. Influence of unloading groove opening of port plate of plunger pumps on transient flow field characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2919-2929 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0713

Influence of unloading groove opening of port plate of plunger pumps on transient flow field characteristics

doi: 10.13700/j.bh.1001-5965.2022.0713
Funds:  National Key Research and Development Program of China (2021YFB2011903)
More Information
  • Corresponding author: E-mail:huangjiahai@tyut.edu.cn
  • Received Date: 13 Aug 2022
  • Accepted Date: 09 Nov 2022
  • Available Online: 25 Nov 2022
  • Publish Date: 24 Nov 2022
  • Cavitation in axial plunger pumps is a main factor affecting its comprehensive performance. The damage in the surface of plunger cylinder is a common failure mode, but the cause is not clear. In view of this damage reason, a three-dimensional CFD model of the pump was established, and a visualization device was designed to observe the flow field characteristics of single plunger cavity and unloading groove on state, so the cause relationship was revealed by simulation and visual measurement of the flow field. The results show that the jet angle increases with the increase in unloading groove opening, accompanied by the generation and disappearance of the vortex, the vortex is generated when the central velocity of the jet is greater than 20 m/s. The simulation results further show that during the transition of the plunger and unloading groove from on state to complete cut-off, the jet angle increases from 0° to 60° gradually. When the jet angle changes from 0° to 20°, the jet direction mainly concentrates on the contact surface between the plunger type cylinder and the waistband groove of the port plate, which leads to jet damage and cavitation damage on the friction surface of the plunger type cylinder and the upper part of the oil absorption waistband groove of the port plate. When the jet angle changes from 20° to 60°, the jet angle expands to the inside of the waistband groove of the port plate, which causes the damaged area of the port plate to move from the upper part to the inside. The formation and disappearance of the vortex are related to the central velocity of the jet. The above research results are helpful in clarifying the causes of cavitation damage on the friction surface of plunger type cylinders, and they provide constraints for the optimization design of port plate structure and have important significance for improving the comprehensive performance of plunger pumps.

     

  • loading
  • [1]
    CHAO Q, XU Z, TAO J F, et al. Cavitation in a high-speed aviation axial piston pump over a wide range of fluid temperatures[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2022, 236(4): 727-737. doi: 10.1177/09576509211046998
    [2]
    CHAO Q, ZHANG J H, XU B, et al. Effects of inclined cylinder ports on gaseous cavitation of high-speed electro-hydrostatic actuator pumps: a numerical study[J]. Engineering Applications of Computational Fluid Mechanics, 2019, 13(1): 245-253. doi: 10.1080/19942060.2019.1576545
    [3]
    GULLAPALLI S, MICHAEL P, KENSLER J, et al. An investigation of hydraulic fluid composition and aeration in an axial piston pump[C]//Proceedings of the ASME/BATH Symposium on Fluid Power and Motion Control. Sarasota: American Society of Mechanical Engineers, 2017: 4259.
    [4]
    ZHAO B, GUO W W, QUAN L. Cavitation of a submerged jet at the spherical valve plate/cylinder block interface for axial piston pump[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 67. doi: 10.1186/s10033-020-00486-8
    [5]
    HARRIS R M, EDGE K A, TILLEY D G. The suction dynamics of positive displacement axial piston pumps[J]. Journal of Dynamic Systems, Measurement, and Control, 1994, 116(2): 281-287. doi: 10.1115/1.2899221
    [6]
    SINGHAL A K, ATHAVALE M M, LI H Y, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624. doi: 10.1115/1.1486223
    [7]
    苑士华, 周俊杰, 罗先伟, 等. 轴向柱塞泵空化时气相动态演进过程及影响[J]. 兵工学报, 2015, 36(3): 559-565. doi: 10.3969/j.issn.1000-1093.2015.03.026

    YUAN S H, ZHOU J J, LUO X W, et al. Dynamic evolution and effects of gas phase in cavitation of axial piston pump[J]. Acta Armamentarii, 2015, 36(3): 559-565(in Chinese). doi: 10.3969/j.issn.1000-1093.2015.03.026
    [8]
    潮群. EHA轴向柱塞泵高速化若干关键技术研究[D]. 杭州: 浙江大学, 2019.

    CHAO Q. Research on some key technologies of EHA axial piston pump with high speed[D]. Hangzhou: Zhejiang University, 2019(in Chinese).
    [9]
    PENG K W, TIAN S C, LI G S, et al. Bubble dynamics characteristics and influencing factors on the cavitation collapse intensity for self-resonating cavitating jets[J]. Petroleum Exploration and Development, 2018, 45(2): 343-350. doi: 10.1016/S1876-3804(18)30038-7
    [10]
    LIANG J, LUO X H, LIU Y S, et al. A numerical investigation in effects of inlet pressure fluctuations on the flow and cavitation characteristics inside water hydraulic poppet valves[J]. International Journal of Heat and Mass Transfer, 2016, 103: 684-700. doi: 10.1016/j.ijheatmasstransfer.2016.07.112
    [11]
    SHEN X, ZHANG D S, XU B, et al. Comparative study of tip leakage vortex trajectory and cavitation in an axial flow pump with various tip clearances[J]. Journal of Mechanical Science and Technology, 2022, 36(3): 1289-1302. doi: 10.1007/s12206-022-0219-2
    [12]
    CHO I S. A study on the optimum design for the valve plate of a swash plate-type oil hydraulic piston pump[J]. Journal of Mechanical Science and Technology, 2015, 29(6): 2409-2413. doi: 10.1007/s12206-015-0533-z
    [13]
    GIOVANNESCHI P, DUFRESNE D. Experimental study of laser-induced cavitation bubbles[J]. Journal of Applied Physics, 1985, 58(2): 651-652. doi: 10.1063/1.336204
    [14]
    AKHATOV I, LINDAU O, TOPOLNIKOV A, et al. Collapse and rebound of a laser-induced cavitation bubble[J]. Physics of Fluids, 2001, 13(10): 2805-2819. doi: 10.1063/1.1401810
    [15]
    BRUJAN E A, KEEN G S, VOGEL A, et al. The final stage of the collapse of a cavitation bubble close to a rigid boundary[J]. Physics of Fluids, 2002, 14(1): 85-92. doi: 10.1063/1.1421102
    [16]
    ROBINSON P B, BLAKE J R, KODAMA T, et al. Interaction of cavitation bubbles with a free surface[J]. Journal of Applied Physics, 2001, 89(12): 8225-8237. doi: 10.1063/1.1368163
    [17]
    ZHANG Y, DONG Z, HU X. Cavitation limiting strategies for pumping system: US, 20180040226A1[P]. 2018-02-08.
    [18]
    郭伟伟. 轴向柱塞泵淹没空化射流特征研究[D]. 太原: 太原理工大学, 2020.

    GUO W W. Study on characteristics of submerged cavitation jet in axial piston pump[D]. Taiyuan: Taiyuan University of Technology, 2020(in Chinese).
    [19]
    築地徹浩, 陈卓, 陈晶晶. 轴向柱塞泵内部空化流的可视化分析[J]. 液压与气动, 2015(2): 1-7. doi: 10.11832/j.issn.1000-4858.2015.02.001

    Tetsuhiro T, CHEN Z, CHEN J J. Visualized analysis of cavitation inside axial piston pump[J]. Chinese Hydraulics & Pneumatics, 2015(2): 1-7(in Chinese). doi: 10.11832/j.issn.1000-4858.2015.02.001
    [20]
    YAMAGUCHI A, TAKABE T. Cavitation in an axial piston pump[J]. Bulletin of JSME, 1983, 26(211): 72-78. doi: 10.1299/jsme1958.26.72
    [21]
    ITO K, INOUE K, SAITO K. Visualization and detection of cavitation in v-shaped groove type valve plate of an axial piston pump[J]. Proceedings of the JFPS International Symposium on Fluid Power, 1996, 1996(3): 67-72. doi: 10.5739/isfp.1996.67
    [22]
    QI G N, TIAN T, HE Z Q, et al. Cavitation phenomenon of high-pressure piston pump and control[J]. Machine Tool & Hydraulics, 2021, 49(9): 187-191.
    [23]
    LIU W, WANG A L, SHAN X W, et al. Valve plate for piston pump cavitation problem with the damp groove structural optimization[J]. Applied Mechanics and Materials, 2014, 543-547: 154-157. doi: 10.4028/www.scientific.net/AMM.543-547.154
    [24]
    KOLLEK W, KUDŹMA Z, STOSIAK M, et al. Possibilities of diagnosing cavitation in hydraulic systems[J]. Archives of Civil and Mechanical Engineering, 2007, 7(1): 61-73. doi: 10.1016/S1644-9665(12)60005-3
    [25]
    GB/T 265-1988,石油产品运动粘度测定法和动力粘度计算法[S]. 北京:中国标准出版社,1990.

    GB/T 265-1988, Petroleum products-determination of kinematic viscosity and calculation of dynamic viscosity[S]. Beijing: Standards Press of China, 1990(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views(231) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return