Volume 50 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
LU X H,CAI J,ZHANG Z G,et al. Adequacy and suitability of airworthiness clause of bird strike based on bird situation in China[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2810-2818 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0726
Citation: LU X H,CAI J,ZHANG Z G,et al. Adequacy and suitability of airworthiness clause of bird strike based on bird situation in China[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2810-2818 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0726

Adequacy and suitability of airworthiness clause of bird strike based on bird situation in China

doi: 10.13700/j.bh.1001-5965.2022.0726
Funds:  National Natural Science Foundation of China (U1933202); Safety Capacity Building Fund of CAAC (2021-198)
More Information
  • Corresponding author: E-mail:luxiaohua@nuaa.edu.cn
  • Received Date: 17 Aug 2022
  • Accepted Date: 04 Nov 2022
  • Available Online: 16 Dec 2022
  • Publish Date: 02 Dec 2022
  • Based on the data source of bird strike information of airplanes in transportation category from civil aviation of China in recent ten years, the mixed Weibull function was used to fit the bird strike energy distribution, and a Levenberg-Marquardt (L-M) optimization algorithm was applied to obtain more accurate estimations of fitted distribution parameters. Based on the safety index, it was sufficient and appropriate for the wing to evaluate the existing airworthiness clauses of bird strike by the bird strike energy distribution function. However, it was sufficient but too conservative for the tail. According to the safety index of catastrophic accidents, the minimum bird weight meeting the airworthiness requirement of the wing against bird strike under the bird situation in China was 1.218 kg. At the same time, the vision was verified that Federal Aviation Administration (FAA) would increase the minimum airworthiness requirement of the wing against bird strike to 3.6 kg under the bird situation in America, which partially demonstrated the validity of the methods and reliability of the results and provided a theoretical basis and practical reference for the independent revision of relevant airworthiness clauses of civil aviation of China.

     

  • loading
  • [1]
    Federal Aviation Administration, Department of Transportation of U. S. Part 25—Airworthiness standards: Transport category airplanes [S/OL] . Washington, D. C. : Federal Aviation Administration, (2024-05-01)[2024-05-23]. https://www.govinfo.gov/content/pkg/CFR-2023-title14-vol1/pdf/CFR-2023-title14-vol1-part25.pdf.
    [2]
    European Aviation Safety Agency. Certification specifications and acceptable means of compliance for large aeroplanes CS-25: Amendment 19[S]. Brussels: European Aviation Safety Agency, 2017: 1-C-26-1-C-28+1-D-6.
    [3]
    ANDREW H K. Submittal of results of harmonization effort on FAR/JAR §25.631, birdstrike: L350-03-114, version 2[R]. Washington, D. C. : Aviation Rulemaking Advisory Committee of FAA, 2003: 11-32.
    [4]
    中国民用航空局政策法规司. 运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2016: 69-71.

    Policy and Regulation Department, Civil Aviation Administration of China. Airworthiness standards of transport category airplanes CCAR-25-R4 [S]. Beijing: Civil Aviation Administration of China, 2016: 69-71(in Chinese).
    [5]
    Federal Aviation Administration, Department of Transportation of U. S. Bird strike requirements for transport category airplanes: FAA–2015–2490[S]. Washington D. C. : Federal Aviation Administration, 2015: 63877-63878.
    [6]
    COLÓN M R, LONG A M. Strike hazard posed by columbids to military aircraft[J]. Human-Wildlife Interactions, 2018, 12(2): 198-211.
    [7]
    PFEIFFER M B, BLACKWELL B F, DEVAULT T L, et al. Quantification of avian hazards to military aircraft and implications for wildlife management[J]. Public Library of Science One, 2018, 13(11): 1-16.
    [8]
    熊明兰, 王华伟, 徐怡, 等. 基于鸟击事故征候预测的通用航空安全研究[J]. 系统工程与电子技术, 2020, 42(9): 2033-2040.

    XIONG M L, WANG H W, XU Y, et al. General aviation safety research based on prediction of bird strike symptom[J]. Systems Engineering and Electronics, 2020, 42(9): 2033-2040(in Chinese).
    [9]
    陈唯实, 万健, 李敬. 基于机场探鸟雷达数据的鸟击风险评估[J]. 北京航空航天大学学报, 2013, 39(11): 1431-1436.

    CHEN W S, WAN J, LI J. Bird strike risk assessment with airport avian radar data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1431-1436(in Chinese).
    [10]
    郑江萍. 鸟击风险分布及风险评估研究[D]. 天津: 中国民航大学, 2014: 38-43.

    ZHENG J P. Study on risk distribution and assessment of bird strike[D]. Tianjin: Civil Aviation University of China, 2014: 38-43(in Chinese).
    [11]
    朱贝蓓, 蔡景. 基于MCMC方法的运输类飞机鸟撞冲击能量研究[J]. 航空计算技术, 2017, 47(1): 94-96.

    ZHU B B, CAI J. Study on impact energy of bird strike of transport aircraft based on MCMC method[J]. Aeronautical Computing Technique, 2017, 47(1): 94-96(in Chinese).
    [12]
    SARKHEIL H, TALAEIAN ERAGHI M, VATAN KHAH S. Hazard identification and risk modeling on runway bird strikes at Sardar-e-Jangal International Airport of Iran[J]. Modeling Earth Systems and Environment, 2021, 7(4): 2589-2598. doi: 10.1007/s40808-020-01032-0
    [13]
    陈琨, 解江, 裴惠, 等. 明胶鸟弹撞击复合材料蜂窝夹芯板试验[J]. 复合材料学报, 2020, 37(2): 328-335.

    CHEN K, XIE J, PEI H, et al. Experiment of composite honeycomb sandwich panels subjected to gelatin bird impact[J]. Acta Materiae Compositae Sinica, 2020, 37(2): 328-335(in Chinese).
    [14]
    LONG S C, MU X L, LIU Y H, et al. Failure modeling of composite wing leading edge under bird strike[J]. Composite Structures, 2021, 255: 113005. doi: 10.1016/j.compstruct.2020.113005
    [15]
    朱海龙. 民用飞机液压系统防鸟撞适航符合性评估[J]. 液压气动与密封, 2021, 41(10): 67-70.

    ZHU H L. CivilAircraft hydraulic system airworthiness compliance assessment for bird bird impact[J]. Hydraulics Pneumatics & Seals, 2021, 41(10): 67-70(in Chinese).
    [16]
    KIM D H, KIM S W. Evaluation of bird strike-induced damages of helicopter composite fuel tank assembly based on fluid-structure interaction analysis[J]. Composite Structures, 2019, 210: 676-686. doi: 10.1016/j.compstruct.2018.11.086
    [17]
    顾晨轩, 苏艳, 王辉. 国内外运输类飞机鸟撞适航条款及其修订背景研究分析[J]. 科技创新导报, 2017, 14(7): 247-249.

    GU C X, SU Y, WANG H. Research and analysis on airworthiness clause of bird impact of transport aircraft at home and abroad and its revision background[J]. Science and Technology Innovation Herald, 2017, 14(7): 247-249(in Chinese).
    [18]
    罗刚, 张海洋, 吴春波, 等. 航空发动机吞鸟与鸟撞飞机适航通用分析方法[J]. 航空发动机, 2019, 45(6): 90-96.

    LUO G, ZHANG H Y, WU C B, et al. General airworthiness analysis method of aeroengine bird ingestion and aircraft bird impact[J]. Aeroengine, 2019, 45(6): 90-96(in Chinese).
    [19]
    SUZANNE M. Bird strike requirements for transport category airplane- compliance by analysis[R]. Washington, D. C. : FAA, 2016: 1-15.
    [20]
    ASTM Subcommittee on Transparent Enclosures. Standard test method for bird impact testing of aerospace transparent enclosure: F330-21[S]. West Conshohochen: ASTM International, 2021: 1-5.
    [21]
    王立, 孙秀清, 张春明, 等. 一种全天时星跟踪器相对惯导的安装阵在线快速估计方法[J]. 航空学报, 2020, 41(8): 624117.

    WANG L, SUN X Q, ZHANG C M, et al. Fast online estimation method for installing matrix between all-time star tracker and inertial navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 624117(in Chinese).
    [22]
    中国民用航空局机场司和中国民航科学技术研究院. 2015年度中国民航鸟击信息分析报告[R]. 北京: 中国民用航空局, 2015: 1-24.

    Airport Department of Civil Aviation Administration of China and China Academy of Civil Aviation Science and Technology. Civil aviation bird strike aircraft information analysis report of civil aviation of China in 2015[R]. Beijing: Civil Aviation Administration of China, 2015: 1-24(in Chinese).
    [23]
    Society of Automotive Engineers. Guidelines and methods for conducting the safety assessment process on civil airborne system and equipment: ARP 4761[S]. Detroit: SAE International, 1996: 102-103.
    [24]
    RICHARD A D, MICHAEL J B, PHYLLIS R M, et al. Wildlife strikes to civil aircraft in the United States, 1990–2019[R]. Washington D. C. : Federal Aviation AdministrationNational Wildlife Strike Database, 2021: 2-31 .
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(177) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return