Volume 50 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
HU D W,LI S S,LIU G H. Research progress on influence of disturbance of abiotic environmental factors on microbial community succession[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2677-2687 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0736
Citation: HU D W,LI S S,LIU G H. Research progress on influence of disturbance of abiotic environmental factors on microbial community succession[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2677-2687 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0736

Research progress on influence of disturbance of abiotic environmental factors on microbial community succession

doi: 10.13700/j.bh.1001-5965.2022.0736
Funds:  National Key Research and Development Program of China (2021YFA0716100); Fund for International Cooperation and Exchange of the Natural Science Foundation of China (32261133528)
More Information
  • Corresponding author: E-mail:liugh1991@126.com
  • Received Date: 22 Aug 2022
  • Accepted Date: 09 Sep 2022
  • Available Online: 07 Nov 2022
  • Publish Date: 02 Nov 2022
  • It is one of the main goals of microbial ecology to understand factors that drive the succession of communities. Abiotic environmental factors affect the growth of populations and the interactions between them. Microbial communities are very sensitive and can easily respond to changes in abiotic environmental factors as the disturbance. Studying the influence of different types of disturbance will enhance the understanding of the relationship among diversity, structure, and function of the microbial community. With the action subject as the classification criteria, the influence of various abiotic environmental factors on the succession of microbial communities was sorted out, including abiotic environmental factors in non-specific, specific, and special (e.g. space) environments. Although studies have been conducted on the succession of microbial communities in various forms due to disturbance, there is still a long way to go for related exploration. The quantification, multi-factor effect of disturbance, and the time course of succession have yet to be studied enough.

     

  • loading
  • [1]
    WELLBORN G A, SKELLY D K, WERNER E E. Mechanisms creating community structure across a freshwater habitat gradient[J]. Annual Review of Ecology, Evolution, and Systematics, 1996, 27: 337-363. doi: 10.1146/annurev.ecolsys.27.1.337
    [2]
    WERNER E E. Species packing and niche complementarity in three sunfishes[J]. The American Naturalist, 1977, 111(979): 553-578. doi: 10.1086/283184
    [3]
    TILMAN D. The importance of the mechanisms of interspecific competition[J]. The American Naturalist, 1987, 129(5): 769-774. doi: 10.1086/284672
    [4]
    GORTER F A, MANHART M, ACKERMANN M. Understanding the evolution of interspecies interactions in microbial communities[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375(1798): 20190256. doi: 10.1098/rstb.2019.0256
    [5]
    KONOPKA A. What is microbial community ecology?[J]. The ISME Journal, 2009, 3(11): 1223-1230. doi: 10.1038/ismej.2009.88
    [6]
    MOUILLOT D, GRAHAM N A J, VILLÉGER S, et al. A functional approach reveals community responses to disturbances[J]. Trends in Ecology & Evolution, 2013, 28(3): 167-177.
    [7]
    BRIONES A, RASKIN L. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability[J]. Current Opinion in Biotechnology, 2003, 14(3): 270-276. doi: 10.1016/S0958-1669(03)00065-X
    [8]
    STEGEN J C, LIN X J, FREDRICKSON J K, et al. Quantifying community assembly processes and identifying features that impose them[J]. The ISME Journal, 2013, 7(11): 2069-2079. doi: 10.1038/ismej.2013.93
    [9]
    POWELL J R, KARUNARATNE S, CAMPBELL C D, et al. Deterministic processes vary during community assembly for ecologically dissimilar taxa[J]. Nature Communications, 2015, 6: 8444. doi: 10.1038/ncomms9444
    [10]
    ZHOU J Z, NING D L. Stochastic community assembly: Does it matter in microbial ecology?[J]. Microbiology and Molecular Biology Reviews, 2017, 81(4): e00002-e00017.
    [11]
    TILMAN D. Resource competition and community structure[M]. Princeton: Princeton University Press, 1982.
    [12]
    ABREU C I, FRIEDMAN J, ANDERSEN WOLTZ V L, et al. Mortality causes universal changes in microbial community composition[J]. Nature Communications, 2019, 10: 2120. doi: 10.1038/s41467-019-09925-0
    [13]
    RYKIEL E J. Towards a definition of ecological disturbance[J]. Australian Journal of Ecology, 1985, 10(3): 361-365. doi: 10.1111/j.1442-9993.1985.tb00897.x
    [14]
    SANTILLAN E, SESHAN H, CONSTANCIAS F, et al. Frequency of disturbance alters diversity, function, and underlying assembly mechanisms of complex bacterial communities[J]. NPJ Biofilms and Microbiomes, 2019, 5: 8. doi: 10.1038/s41522-019-0079-4
    [15]
    MACKEY R L, CURRIE D J. The diversity-disturbance relationship: Is it generally strong and peaked?[J]. Ecology, 2001, 82(12): 3479.
    [16]
    SHADE A, PETER H, ALLISON S D, et al. Fundamentals of microbial community resistance and resilience[J]. Frontiers in Microbiology, 2012, 3: 417.
    [17]
    SHADE A, READ J S, YOUNGBLUT N D, et al. Lake microbial communities are resilient after a whole-ecosystem disturbance[J]. The ISME Journal, 2012, 6(12): 2153-2167. doi: 10.1038/ismej.2012.56
    [18]
    SOUSA W. The role of disturbance in natural communities[J]. Annual Review of Ecology, Evolution, and Systematics, 1984, 15: 353-391. doi: 10.1146/annurev.es.15.110184.002033
    [19]
    MYKRÄ H, TOLKKINEN M, HEINO J. Environmental degradation results in contrasting changes in the assembly processes of stream bacterial and fungal communities[J]. Oikos, 2017, 126(9): 1291-1298. doi: 10.1111/oik.04133
    [20]
    ALLISON S D, MARTINY J B H. Resistance, resilience, and redundancy in microbial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(Suppl 1): 11512-11519.
    [21]
    DETHLEFSEN L, RELMAN D A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl 1): 4554-4561.
    [22]
    FERRENBERG S, O’NEILL S P, KNELMAN J E, et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance[J]. The ISME Journal, 2013, 7(6): 1102-1111. doi: 10.1038/ismej.2013.11
    [23]
    CONNELL J H. The influence of interspecific competition and other factors on the distribution of the barnacle chthamalusstellatus[J]. Ecology, 1961, 42(4): 710-723. doi: 10.2307/1933500
    [24]
    尚玉昌. 普通生态学[M]. 3版. 北京: 北京大学出版社, 2010.

    SHANG Y C. General ecology[M]. 3rd ed. Beijing: Peking University Press, 2010(in Chinese).
    [25]
    FOX J W. The intermediate disturbance hypothesis should be abandoned[J]. Trends in Ecology & Evolution, 2013, 28(2): 86-92.
    [26]
    ORROCK J L, WATLING J I. Local community size mediates ecological drift and competition in metacommunities[J]. Proceedings Biological Sciences, 2010, 277(1691): 2185-2191.
    [27]
    ATLAS R M. Diversity of microbial communities[M]//MARSHALL K C. Advances in microbial ecology. Berlin: Springer, 1984: 1-47.
    [28]
    ATLAS R M, HOROWITZ A, KRICHEVSKY M, et al. Response of microbial populations to environmental disturbance[J]. Microbial Ecology, 1991, 22(3): 249-256. doi: 10.1007/BF02540227
    [29]
    MÜLLER A K, WESTERGAARD K, CHRISTENSEN S, et al. The diversity and function of soil microbial communities exposed to different disturbances[J]. Microbial Ecology, 2002, 44(1): 49-58. doi: 10.1007/s00248-001-0042-8
    [30]
    BENDER E A, CASE T J, GILPIN M E. Perturbation experiments in community ecology: Theory and practice[J]. Ecology, 1984, 65(1): 1-13. doi: 10.2307/1939452
    [31]
    SCHEUERL T, KAITALA V. The effect of dilution on eco-evolutionary dynamics of experimental microbial communities[J]. Ecology and Evolution, 2021, 11(19): 13430-13444. doi: 10.1002/ece3.8065
    [32]
    SOMMER U. Phytoplankton competition along a gradient of dilution rates[J]. Oecologia, 1986, 68(4): 503-506. doi: 10.1007/BF00378762
    [33]
    SPIJKERMAN E, COESEL P F M. Competition for phosphorus among planktonic desmid species in continuous-flow culture[J]. Journal of Phycology, 1996, 32(6): 939-948. doi: 10.1111/j.0022-3646.1996.00939.x
    [34]
    ABREU C I, ANDERSEN WOLTZ V L, FRIEDMAN J, et al. Microbial communities display alternative stable states in a fluctuating environment[J]. PLoS Computational Biology, 2020, 16(5): e1007934. doi: 10.1371/journal.pcbi.1007934
    [35]
    CHESSON P, HUNTLY N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities[J]. The American Naturalist, 1997, 150(5): 519-553. doi: 10.1086/286080
    [36]
    KAITALA V, HILTUNEN T, BECKS L, et al. Co-evolution as an important component explaining microbial predator-prey interaction[J]. Journal of Theoretical Biology, 2020, 486: 110095. doi: 10.1016/j.jtbi.2019.110095
    [37]
    STEVENSON B S, SCHMIDT T M. Life history implications of rRNA gene copy number in Escherichia coli[J]. Applied and Environmental Microbiology, 2004, 70(11): 6670-6677. doi: 10.1128/AEM.70.11.6670-6677.2004
    [38]
    KLAPPENBACH J A, DUNBAR J M, SCHMIDT T M. rRNA operon copy number reflects ecological strategies of bacteria[J]. Applied and Environmental Microbiology, 2000, 66(4): 1328-1333. doi: 10.1128/AEM.66.4.1328-1333.2000
    [39]
    WANG M X, LIU X N, NIE Y, et al. Selfishness driving reductive evolution shapes interdependent patterns in spatially structured microbial communities[J]. The ISME Journal, 2021, 15(5): 1387-1401. doi: 10.1038/s41396-020-00858-x
    [40]
    ESCALANTE A E, REBOLLEDA-GÓMEZ M, BENÍTEZ M, et al. Ecological perspectives on synthetic biology: Insights from microbial population biology[J]. Frontiers in Microbiology, 2015, 6: 143.
    [41]
    HARCOMBE W. Novel cooperation experimentally evolved between species[J]. Evolution, 2010, 64(7): 2166-2172.
    [42]
    RAYNAUD X, NUNAN N. Spatial ecology of bacteria at the microscale in soil[J]. PLoS One, 2014, 9(1): e87217. doi: 10.1371/journal.pone.0087217
    [43]
    AMOR D R, DAL BELLO M. Bottom-up approaches to synthetic cooperation in microbial communities[J]. Life, 2019, 9(1): 22. doi: 10.3390/life9010022
    [44]
    LI S S, LIU H, LIU G H, et al. Simulated artificial interventions maintain species diversity of spatially structured microbial communities in closed ecosystem[J]. Acta Astronautica, 2022, 201: 39-47. doi: 10.1016/j.actaastro.2022.08.023
    [45]
    WOODWARD G, PERKINS D M, BROWN L E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1549): 2093-2106. doi: 10.1098/rstb.2010.0055
    [46]
    RAMONEDA J, HAWES I, PASCUAL-GARCÍA A, et al. Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system[J]. FEMS Microbiology Ecology, 2021, 97(4): fiab044. doi: 10.1093/femsec/fiab044
    [47]
    CHOWN S L, CLARKE A, FRASER C I, et al. The changing form of Antarctic biodiversity[J]. Nature, 2015, 522: 431-438. doi: 10.1038/nature14505
    [48]
    HAWES I, SMITH R, HOWARD-WILLIAMS C, et al. Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica[J]. Antarctic Science, 1999, 11(2): 198-208. doi: 10.1017/S0954102099000267
    [49]
    JUVIGNY-KHENAFOU N P D, PIGGOTT J J, ATKINSON D, et al. Fine sediment and flow velocity impact bacterial community and functional profile more than nutrient enrichment[J]. Ecological Applications, 2021, 31(1): e02212. doi: 10.1002/eap.2212
    [50]
    HARTWIG M, BORCHARDT D. Alteration of key hyporheic functions through biological and physical clogging along a nutrient and fine-sediment gradient[J]. Ecohydrology, 2015, 8(5): 961-975. doi: 10.1002/eco.1571
    [51]
    BESEMER K. Biodiversity, community structure and function of biofilms in stream ecosystems[J]. Research in Microbiology, 2015, 166(10): 774-781. doi: 10.1016/j.resmic.2015.05.006
    [52]
    STEVENS C L, HURD C L. Boundary-layers around bladed aquatic macrophytes[J]. Hydrobiologia, 1997, 346(1): 119-128.
    [53]
    SALIS R K, BRUDER A, PIGGOTT J J, et al. High-throughput amplicon sequencing and stream benthic bacteria: Identifying the best taxonomic level for multiple-stressor research[J]. Scientific Reports, 2017, 7: 44657. doi: 10.1038/srep44657
    [54]
    NUY J K, LANGE A, BEERMANN A J, et al. Responses of stream microbes to multiple anthropogenic stressors in a mesocosm study[J]. The Science of the Total Environment, 2018, 633: 1287-1301. doi: 10.1016/j.scitotenv.2018.03.077
    [55]
    WAGG C, DUDENHÖFFER J H, WIDMER F, et al. Linking diversity, synchrony and stability in soil microbial communities[J]. Functional Ecology, 2018, 32(5): 1280-1292. doi: 10.1111/1365-2435.13056
    [56]
    HABIG J, LABUSCHAGNE J, MARAIS M, et al. The effect of a medic-wheat rotational system and contrasting degrees of soil disturbance on nematode functional groups and soil microbial communities[J]. Agriculture, Ecosystems & Environment, 2018, 268: 103-114.
    [57]
    PELLKOFER S, VAN DER HEIJDEN M G A, SCHMID B, et al. Soil communities promote temporal stability and species asynchrony in experimental grassland communities[J]. PLoS One, 2016, 11(2): e0148015. doi: 10.1371/journal.pone.0148015
    [58]
    WAGG C, BENDER S F, WIDMER F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Science of the United States of America, 2014, 111(14): 5266-5270. doi: 10.1073/pnas.1320054111
    [59]
    LAUBER C L, RAMIREZ K S, AANDERUD Z, et al. Temporal variability in soil microbial communities across land-use types[J]. The ISME Journal, 2013, 7(8): 1641-1650. doi: 10.1038/ismej.2013.50
    [60]
    BRADFORD M A, WOOD S A, BARDGETT R D, et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): 14478-14483.
    [61]
    GRIFFITHS B S, KUAN H L, RITZ K, et al. The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil[J]. Microbial Ecology, 2004, 47(1): 104-113. doi: 10.1007/s00248-002-2043-7
    [62]
    LOREAU M. From populations to ecosystems[M]. Princeton: Princeton University Press, 2010.
    [63]
    LOREAU M, DE MAZANCOURT C. Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments[J]. The American Naturalist, 2008, 172(2): 48-66. doi: 10.1086/589746
    [64]
    GONZALEZ A, LOREAU M. The causes and consequences of compensatory dynamics in ecological communities[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40: 393-414. doi: 10.1146/annurev.ecolsys.39.110707.173349
    [65]
    SILVA A P. Bacterial diversity under different tillage and crop rotation systems in an oxisol of southern Brazil[J]. The Open Agriculture Journal, 2013, 7(1): 40-47. doi: 10.2174/1874331501307010040
    [66]
    FINLAY B J. Global dispersal of free-living microbial eukaryote species[J]. Science, 2002, 296(5570): 1061-1063. doi: 10.1126/science.1070710
    [67]
    LOGUE J B, MOUQUET N, PETER H, et al. Empirical approaches to metacommunities: A review and comparison with theory[J]. Trends in Ecology & Evolution, 2011, 26(9): 482-491.
    [68]
    BAHO D L, PETER H, TRANVIK L J. Resistance and resilience of microbial communities: Temporal and spatial insurance against perturbations[J]. Environmental Microbiology, 2012, 14(9): 2283-2292. doi: 10.1111/j.1462-2920.2012.02754.x
    [69]
    URBAN M C, DE MEESTER L. Community monopolization: Local adaptation enhances priority effects in an evolving metacommunity[J]. Proceedings Biological Sciences, 2009, 276(1676): 4129-4138.
    [70]
    SHULMAN M J, OGDEN J C, EBERSOLE J P, et al. Priority effects in the recruitment of juvenile coral reef fishes[J]. Ecology, 1983, 64(6): 1508-1513. doi: 10.2307/1937505
    [71]
    SHADE A, READ J S, WELKIE D G, et al. Resistance, resilience and recovery: Aquatic bacterial dynamics after water column disturbance[J]. Environmental Microbiology, 2011, 13(10): 2752-2767. doi: 10.1111/j.1462-2920.2011.02546.x
    [72]
    WANG M, CHEN S B, CHEN L, et al. Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils[J]. Environmental Pollution, 2019, 252: 1609-1621. doi: 10.1016/j.envpol.2019.06.082
    [73]
    ZENG X Y, LI S W, LENG Y, et al. Structural and functional responses of bacterial and fungal communities to multiple heavy metal exposure in arid loess[J]. The Science of the Total Environment, 2020, 723: 138081. doi: 10.1016/j.scitotenv.2020.138081
    [74]
    ROUSK J, BÅÅTH E, BROOKES P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 2010, 4(10): 1340-1351. doi: 10.1038/ismej.2010.58
    [75]
    DE VRIES F T, MANNING P, TALLOWIN J R B, et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities[J]. Ecology Letters, 2012, 15(11): 1230-1239. doi: 10.1111/j.1461-0248.2012.01844.x
    [76]
    WEI W, YANG M, LIU Y X, et al. Fertilizer N application rate impacts plant-soil feedback in a Sanqi production system[J]. The Science of the Total Environment, 2018, 633: 796-807. doi: 10.1016/j.scitotenv.2018.03.219
    [77]
    MEENA R, DATTA S P, GOLUI D, et al. Long-term impact of sewage irrigation on soil properties and assessing risk in relation to transfer of metals to human food chain[J]. Environmental Science and Pollution Research, 2016, 23(14): 14269-14283. doi: 10.1007/s11356-016-6556-x
    [78]
    FENG G, XIE T, WANG X, et al. Metagenomic analysis of microbial community and function involved in Cd-contaminated soil[J]. BMC Microbiology, 2018, 18(1): 11. doi: 10.1186/s12866-018-1152-5
    [79]
    CUI H, LIU L L, DAI J R, et al. Bacterial community shaped by heavy metals and contributing to health risks in cornfields[J]. Ecotoxicology and Environmental Safety, 2018, 166: 259-269. doi: 10.1016/j.ecoenv.2018.09.096
    [80]
    ZHANG H, WAN Z W, DING M J, et al. Inherent bacterial community response to multiple heavy metals in sediment from river-lake systems in the Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2018, 165: 314-324. doi: 10.1016/j.ecoenv.2018.09.010
    [81]
    KUPPUSAMY S, THAVAMANI P, MEGHARAJ M, et al. Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation[J]. Journal of Hazardous Materials, 2016, 317: 169-179. doi: 10.1016/j.jhazmat.2016.05.066
    [82]
    SCHNEIDER G K. Dürrenmatts Besuch der alten dame und hebbels Die nibelungen. urbilder und jugendlektüre[J]. The German Quarterly, 2017, 90(1): 36-54. doi: 10.1111/gequ.12020
    [83]
    PAN X M, ZHANG S R, ZHONG Q M, et al. Effects of soil chemical properties and fractions of Pb, Cd, and Zn on bacterial and fungal communities[J]. The Science of the Total Environment, 2020, 715: 136904. doi: 10.1016/j.scitotenv.2020.136904
    [84]
    MUTURI E J, DONTHU R K, FIELDS C J, et al. Effect of pesticides on microbial communities in container aquatic habitats[J]. Scientific Reports, 2017, 7: 44565. doi: 10.1038/srep44565
    [85]
    RUSSELL R J, SCOTT C, JACKSON C J, et al. The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects[J]. Evolutionary Applications, 2011, 4(2): 225-248. doi: 10.1111/j.1752-4571.2010.00175.x
    [86]
    WIDENFALK A, BERTILSSON S, SUNDH I, et al. Effects of pesticides on community composition and activity of sediment microbes: Responses at various levels of microbial community organization[J]. Environmental Pollution, 2008, 152(3): 576-584. doi: 10.1016/j.envpol.2007.07.003
    [87]
    SCHÄFER R B, BUNDSCHUH M, ROUCH D A, et al. Effects of pesticide toxicity, salinity and other environmental variables on selected ecosystem functions in streams and the relevance for ecosystem services[J]. The Science of the Total Environment, 2012, 415: 69-78. doi: 10.1016/j.scitotenv.2011.05.063
    [88]
    GOLDFORD J E, LU N X, BAJIĆ D, et al. Emergent simplicity in microbial community assembly[J]. Science, 2018, 361(6401): 469-474. doi: 10.1126/science.aat1168
    [89]
    ZHAO P Y, BAO J B, WANG X, et al. Deterministic processes dominate soil microbial community assembly in subalpine coniferous forests on the Loess Plateau[J]. PeerJ, 2019, 7: e6746. doi: 10.7717/peerj.6746
    [90]
    MELLO B L, ALESSI A M, MCQUEEN-MASON S, et al. Nutrient availability shapes the microbial community structure in sugarcane bagasse compost-derived consortia[J]. Scientific Reports, 2016, 6: 38781. doi: 10.1038/srep38781
    [91]
    ARMSTRONG A, VALVERDE A, RAMOND J B, et al. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input[J]. Scientific Reports, 2016, 6: 34434. doi: 10.1038/srep34434
    [92]
    MERINO N, ARONSON H S, BOJANOVA D P, et al. Living at the extremes: Extremophiles and the limits of life in a planetary context[J]. Frontiers in Microbiology, 2019, 10: 780. doi: 10.3389/fmicb.2019.00780
    [93]
    SCHMID A K, ALLERS T, DIRUGGIERO J. SnapShot: Microbial extremophiles[J]. Cell, 2020, 180(4): 818.
    [94]
    URITSKIY G, GETSIN S, MUNN A, et al. Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert[J]. The ISME Journal, 2019, 13(11): 2737-2749. doi: 10.1038/s41396-019-0468-y
    [95]
    URITSKIY G, MUNN A, DAILEY M, et al. Environmental factors driving spatial heterogeneity in desert halophile microbial communities[J]. Frontiers in Microbiology, 2020, 11: 578669. doi: 10.3389/fmicb.2020.578669
    [96]
    YANG X B, XU X M, HU D W. Succession mechanism of microbial community with high species diversity in nutrient-deficient environments with low-dose ionizing radiation[J]. Ecological Modelling, 2020, 435: 109270. doi: 10.1016/j.ecolmodel.2020.109270
    [97]
    NOVIKOVA N, DE BOEVER P, PODDUBKO S, et al. Survey of environmental biocontamination on board the International Space Station[J]. Research in Microbiology, 2006, 157(1): 5-12. doi: 10.1016/j.resmic.2005.07.010
    [98]
    LANG J M, COIL D A, NECHES R Y, et al. A microbial survey of the International Space Station (ISS)[J]. PeerJ, 2017, 5: e4029. doi: 10.7717/peerj.4029
    [99]
    YANG X B, LI S S, SONG G Y, et al. Microbial diversity formed and maintained through substrate feedback regulation and delayed responses induced by low-dose ionizing radiation[J]. Acta Astronautica, 2021, 188: 239-251. doi: 10.1016/j.actaastro.2021.07.027
    [100]
    YANG X B, SONG G Y, LIU H, et al. Microbial diversity formation and maintenance due to temporal niche differentiation caused by low-dose ionizing radiation in oligotrophic environments[J]. Life Sciences in Space Research, 2021, 31: 92-100. doi: 10.1016/j.lssr.2021.08.003
    [101]
    ROSADO H, DOYLE M, HINDS J, et al. Low-shear modelled microgravity alters expression of virulence determinants of Staphylococcus aureus[J]. Acta Astronautica, 2010, 66(3-4): 408-413. doi: 10.1016/j.actaastro.2009.06.007
    [102]
    BOUMA J E, PIERSON D L. Combined effects of simulated microgravity and multi-strain interactions on population dynamics of a constructed microbial community[R]. Warrendale: SAE International, 1998.
    [103]
    李亚红, 陈冲, 武杰, 等. 紫外分光光度法测定海水中季铵盐的含量[J]. 理化检验-化学分册, 2010, 46(2): 136-137.

    LI Y H, CHEN C, WU J, et al. UV-spectrophotometric determination of quaternary ammonium salt in seawater[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2010, 46(2): 136-137(in Chinese).
    [104]
    杨宏, 侯永青, 张兰涛. 微生物控制: 我国空间站面临的新挑战[J]. 载人航天, 2013, 19(2): 38-46.

    YANG H, HOU Y Q, ZHANG L T. Microbe control: A new challenge to faced by Chinese space station[J]. Manned Spaceflight, 2013, 19(2): 38-46(in Chinese).
    [105]
    顾春英, 薛广波. 细菌对消毒剂的抗性研究进展[J]. 中华医院感染学杂志, 1997, 7(4): 62-66.

    GU C Y, XUE G B. Research progress of bacterial resistance to disinfectants[J]. Chinese Journal of Nosocomiology, 1997, 7(4): 62-66(in Chinese).
    [106]
    LOWBURY E J L. Skin disinfection[J]. Journal of Clinical Pathology, 1961, 14(1): 85. doi: 10.1136/jcp.14.1.85
    [107]
    ADAIR F W, GEFTIC S G, GELZER J. Resistance of pseudomonas to quaternary ammonium compounds. I. Growth in benzalkonium chloride solution[J]. Applied Microbiology, 1969, 18(3): 299-302. doi: 10.1128/am.18.3.299-302.1969
    [108]
    LI S, LIU X, CHEN L, et al. Cure or curse? Simulation indicates that microbes proliferate under disinfection measures in the space station[J/OL]. BiorXiv, 2024(2024-05-29)[2024-06-23]. https://doi.org/10.1101/2024.04.16.589799.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views(111) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return