Volume 50 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
ZHAO S,LIN L,LI Z,et al. Deck motion prediction and compensation technology based on BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2772-2780 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0743
Citation: ZHAO S,LIN L,LI Z,et al. Deck motion prediction and compensation technology based on BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2772-2780 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0743

Deck motion prediction and compensation technology based on BP neural network

doi: 10.13700/j.bh.1001-5965.2022.0743
More Information
  • Corresponding author: E-mail:250772665@qq.com
  • Received Date: 29 Aug 2022
  • Accepted Date: 07 Feb 2023
  • Available Online: 31 Mar 2023
  • Publish Date: 30 Mar 2023
  • The impact of deck motion on the complete automatic landing success rate is taken into account during the landing procedure. Aiming at the asynchrony of the deck and the longitudinal height of the carrier-based aircraft caused by the delay in the response of the carrier-based aircraft, the deck motion prediction technology is used to forecast the motion parameters of the ship in the effective time in the future. A six-degree-of-freedom deck motion model based on sine wave combination is established, and a deck motion prediction model is established based on a back-propagation (BP) artificial neural network. A deck motion compensation model is developed in accordance with the advance network, and the landing guidance system is integrated to guarantee that the vector of the deck and the carrier aircraft are in synchronization. The aircraft motion model is established, and the feasibility of the deck motion prediction and compensation technology is verified through the simulation experiments.

     

  • loading
  • [1]
    武恒州, 罗福平, 石星辰, 等. 全自动着舰技术现状与发展趋势分析[J]. 飞机设计, 2020, 40(6): 1-5.

    WU H Z, LUO F P, SHI X C, et al. Analysis on the status quo and development trend of automatic carrier landing technology[J]. Aircraft Design, 2020, 40(6): 1-5(in Chinese).
    [2]
    杨一栋. 直升机飞行控制[M]. 北京: 国防工业出版社, 2007: 37-70.

    YANG Y D. Helicopter flight control[M]. Beijing: National Defense Industry Press, 2007: 37-70(in Chinese).
    [3]
    许东松, 刘星宇, 王立新. 航母运动对舰载飞机着舰安全性的影响[J]. 北京航空航天大学学报, 2011, 37(3): 289-294.

    XU D S, LIU X Y, WANG L X. Influence of carrier motion on landing safety for carrier-based airplanes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 289-294(in Chinese).
    [4]
    王可, 徐明亮, 李亚飞, 等. 一种面向航空母舰甲板运动状态预估的鲁棒学习模型[J]. 自动化学报, 2021, 48: 1-9.

    WANG K, XU M L, LI Y F, et al. A robust learning model for deck motion prediction of aircraft carrier[J]. Acta Automatica Sinica, 2021, 48: 1-9(in Chinese).
    [5]
    杨柳, 徐东昊. 基于极短期运动预报的舰载机着舰过程仿真分析[J]. 中国舰船研究, 2018, 13(4): 99-103.

    YANG L, XU D H. Aircraft carrier landing process simulation based on extremely short-term prediction of ship motion[J]. Chinese Journal of Ship Research, 2018, 13(4): 99-103(in Chinese).
    [6]
    LI X L, LV X H, YU J D, et al. Neural network application on ship motion prediction[C]//Proceedings of the International Conference on Intelligent Human-Machine Systems and Cybernetics. Piscataway: IEEE Press, 2017: 414-417.
    [7]
    王月春, 张素珍, 孙宁. 六自由度舰船运动轨迹跟踪算法分析[J]. 舰船科学技术, 2022, 44(8): 56-59. doi: 10.3404/j.issn.1672-7649.2022.08.011

    WANG Y C, ZHANG S Z, SUN N. Analysis on tracking algorithm of 6-DOF ship motion trajectory[J]. Ship Science and Technology, 2022, 44(8): 56-59(in Chinese). doi: 10.3404/j.issn.1672-7649.2022.08.011
    [8]
    RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
    [9]
    石广军, 张旸, 王青林. 舰船甲板运动预估技术研究[J]. 直升机技术, 2020(4): 20-24. doi: 10.3969/j.issn.1673-1220.2020.04.005

    SHI G J, ZHANG Y, WANG Q L. Prediction technology for ship deck motion[J]. Helicopter Technique, 2020(4): 20-24(in Chinese). doi: 10.3969/j.issn.1673-1220.2020.04.005
    [10]
    吴鹏飞, 石章松, 吴中红, 等. 无人直升机着舰甲板运动预估与补偿方法[J]. 电光与控制, 2019, 26(12): 22-27. doi: 10.3969/j.issn.1671-637X.2019.12.005

    WU P F, SHI Z S, WU Z H, et al. An estimation and compensation method of deck motion for unmanned helicopter landing on ship[J]. Electronics Optics & Control, 2019, 26(12): 22-27(in Chinese). doi: 10.3969/j.issn.1671-637X.2019.12.005
    [11]
    张永花. 舰载机着舰过程甲板运动建模及补偿技术研究[D]. 南京: 南京航空航天大学, 2012: 32-50.

    ZHANG Y H. Research on deck motion modeling and deck motion compensation for carrier landing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 32-50(in Chinese).
    [12]
    张明廉, 徐军. 舰载飞机自动着舰系统的研究[J]. 北京航空航天大学学报, 1994, 20(4): 386-391.

    ZHANG M L, XU J. Research on automatic landing system of carrier-based aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 1994, 20(4): 386-391(in Chinese).
    [13]
    潘海飞, 王欣, 沙峰. 舰载机着舰过程中甲板运动补偿技术研究[J]. 信息技术, 2013, 37(4): 116-120. doi: 10.3969/j.issn.1009-2552.2013.04.032

    PAN H F, WANG X, SHA F. Study on the deck motion compensation technique during carrier aircraft landing[J]. Information Technology, 2013, 37(4): 116-120(in Chinese). doi: 10.3969/j.issn.1009-2552.2013.04.032
    [14]
    URNES J M, HESS R K. Development of the F/A-18A automatic carrier landing system[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(3): 289-295. doi: 10.2514/3.19978
    [15]
    ANDERSON M R. Inter and outer loop manual control of carrier aircraft landing[C]//Proceedings of the AIAA, Guidance, Navigation, and Control Conference. San Diego: AIAA, 1996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views(196) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return