Volume 50 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
LIU X,WANG Z Y,WANG X Y. Optimization three-vector-based model predictive current control for permanent magnet toroidal motor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3297-3309 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0833
Citation: LIU X,WANG Z Y,WANG X Y. Optimization three-vector-based model predictive current control for permanent magnet toroidal motor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3297-3309 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0833

Optimization three-vector-based model predictive current control for permanent magnet toroidal motor

doi: 10.13700/j.bh.1001-5965.2022.0833
Funds:  National Natural Science Foundation of China (51875408); Tianjin Research Innovation Project for Postgraduate Students (2021YJSB229)
More Information
  • Corresponding author: E-mail:liuxin@tiangong.edu.cn
  • Received Date: 04 Oct 2022
  • Accepted Date: 11 Nov 2022
  • Available Online: 06 Jan 2023
  • Publish Date: 06 Jan 2023
  • To improve the steady-state output performance of permanent magnet toroidal motor system with traditional predictive current control, the optimization three-vector-based model predictive current control (OTV-MPCC) strategy for toroidal motor was studied in this paper. A mathematical model of a toroidal motor with time-varying parameters was created in a rotating coordinate system, based on the structural principle of a toroidal motor. The influence of structural parameters on output was analyzed for toroidal motor. For toroidal motor system with time-varying parameters, the OTV-MPCC strategy was adopted. Three voltage vectors were applied in one sampling period. In the meantime, the current prediction iteration is decreased by selecting the second optimal voltage vector through a traversal of five groups of three vector combinations. Three strategies for toroidal motors were simulated and compared: the OTV-MPCC approach, the duty ratio model predictive current control (DR-MPCC) strategy, and the two-vector-based model predictive current control (TV-MPCC) method. The research results show that OTV-MPCC strategy can reduce current and torque ripple for toroidal motor effectively, and it can improve steady-state output performance.

     

  • loading
  • [1]
    刘佳敏, 葛召炎, 吴轩, 等. 基于占空比调制的永磁同步电机预测电流控制[J]. 中国电机工程学报, 2020, 40(10): 3319-3328.

    LIU J M, GE Z Y, WU X, et al. Predictive current control of permanent magnet synchronous motor based on duty-cycle modulation[J]. Proceedings of the CSEE, 2020, 40(10): 3319-3328(in Chinese).
    [2]
    LIU S Y, LIU C H. Virtual-vector-based robust predictive current control for dual three-phase PMSM[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2048-2058. doi: 10.1109/TIE.2020.2973905
    [3]
    赵亚辉, 冯明, 李卫文. 基于SMO的改进型转子位置检测方法[J]. 北京航空航天大学学报, 2020, 46(12): 2329-2338.

    ZHAO Y H, FENG M, LI W W. Improved rotor position detection method based on SMO[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2329-2338(in Chinese).
    [4]
    ZENG X L, YAO L G, ZHANG J, et al. Mathematical modeling and characteristics analysis of the toroidal drive with elastic deformation in the conjugating process[J]. IEEE Access, 2020, 7: 131234-131247.
    [5]
    郝秀红, 朱学军, 许立忠. 机电集成超环面传动系统参数振动研究[J]. 振动与冲击, 2013, 32(22): 113-118.

    HAO X H, ZHU X J, XU L Z. Parametric vibration of an electromechanical integrated toroidal drive[J]. Journal of Vibration and Shock, 2013, 32(22): 113-118(in Chinese).
    [6]
    XU L Z, FU L P. Toroidal drive with half stator[J]. Advances in Mechanical Engineering, 2015, 7(6): 1687814015589270.
    [7]
    XU L Z, LI R, SONG W T. Permanent magnetic toroidal drive with half stator[J]. Advances in Mechanical Engineering, 2017, 9(1): 1687814016686316.
    [8]
    LIU X, SUN M P, WANG X Y. Analysis of end-effect force and weakening method for permanent magnet toroidal motor[J]. IEEE Transactions on Magnetics, 2020, 56(12): 8200707.
    [9]
    刘欣, 许立忠, 聂岭. 新型超环面混合励磁电机的结构及特性分析[J]. 中国电机工程学报, 2015, 35(20): 5335-5343.

    LIU X, XU L Z, NIE L. Structure and characteristic analysis of a novel toroidal motor with hybrid excitation[J]. Proceedings of the CSEE, 2015, 35(20): 5335-5343(in Chinese).
    [10]
    李争, 安金峰, 肖宇, 等. 基于自适应观测器的永磁同步直线电机模型预测控制系统设计[J]. 电工技术学报, 2021, 36(6): 1190-1200.

    LI Z, AN J F, XIAO Y, et al. Design of model predictive control system for permanent magnet synchronous linear motor based on adaptive observer[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1190-1200(in Chinese).
    [11]
    ZHANG Y Q, YIN Z G, LI W, et al. Adaptive sliding-mode-based speed control in finite control set model predictive torque control for induction motors[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 8076-8087. doi: 10.1109/TPEL.2020.3042181
    [12]
    徐艳平, 王极兵, 张保程, 等. 永磁同步电机三矢量模型预测电流控制[J]. 电工技术学报, 2018, 33(5): 980-988.

    XU Y P, WANG J B, ZHANG B C, et al. Three-vector-based model predictive current control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 980-988(in Chinese).
    [13]
    SUN X D, LI T, TIAN X, et al. Fault-tolerant operation of a six-phase permanent magnet synchronous hub motor based on model predictive current control with virtual voltage vectors[J]. IEEE Transactions on Energy Conversion, 2022, 37(1): 337-346. doi: 10.1109/TEC.2021.3109869
    [14]
    XIE H T, WANG F X, XUN Q, et al. A low-complexity gradient descent solution with backtracking iteration approach for finite control set predictive current control[J]. IEEE Transactions on Industrial Electronics, 2022, 69(5): 4522-4533. doi: 10.1109/TIE.2021.3084164
    [15]
    ZHANG Y C, JIANG H, YANG H T. Model predictive control of PMSM drives based on general discrete space vector modulation[J]. IEEE Transactions on Energy Conversion, 2021, 36(2): 1300-1307. doi: 10.1109/TEC.2020.3036082
    [16]
    YUAN J, WEN D D, ZHANG Y. Model predictive current control strategy with reduced computation burden[J]. Mathematical Problems in Engineering, 2021, 2021: 6677543.
    [17]
    ZHANG X G, ZHAO Z H, CHENG Y, et al. Robust model predictive current control based on inductance and flux linkage extraction algorithm[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14893-14902. doi: 10.1109/TVT.2020.3043474
    [18]
    XU D Z, ZHAO W X, TANG H Y, et al. Three-vector-based model predictive current control with zero-sequence current suppression for open-winding LPMVM drives[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 225-236. doi: 10.1109/TVT.2020.3045257
    [19]
    KANG S W, SOH J H, KIM R Y. Symmetrical three-vector-based model predictive control with deadbeat solution for IPMSM in rotating reference frame[J]. IEEE Transactions on Industrial Electronics, 2020, 67(1): 159-168. doi: 10.1109/TIE.2018.2890490
    [20]
    ZHANG Q K, YI Y P, LIU P. Robust model predictive current control without dead-zone compensation[J]. IET Electric Power Applications, 2020, 14(11): 2193-2201. doi: 10.1049/iet-epa.2020.0102
    [21]
    ZHANG X G, YAN K, ZHANG W H. Composite vector model predictive control with time-varying control period for PMSM drives[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1415-1426. doi: 10.1109/TTE.2020.3047898
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views(317) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return