Volume 50 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
CAI X,CHEN Q L,KONG Z J,et al. Anti-jamming method for radio fuzes based on signal variational decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3587-3594 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0860
Citation: CAI X,CHEN Q L,KONG Z J,et al. Anti-jamming method for radio fuzes based on signal variational decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3587-3594 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0860

Anti-jamming method for radio fuzes based on signal variational decomposition

doi: 10.13700/j.bh.1001-5965.2022.0860
Funds:  National Natural Science Foundation of China (61871414)
More Information
  • Corresponding author: E-mail:haoxinhong@bit.edu.cn
  • Received Date: 30 Oct 2022
  • Accepted Date: 28 Nov 2022
  • Available Online: 06 Jan 2023
  • Publish Date: 05 Jan 2023
  • The pulse Doppler fuze experiences sweep-jamming when the jamming signal overloads the receiver channel, causing the fuze to misfire or detonate prematurely. At present, pulse Doppler fuze can avoid false start due to jamming signal by waveform design and multi-dimensional feature recognition, but how to detect the real target under sweep-jamming is still a difficult problem. Aiming at the above problem, the intermediate frequency signal model of pulse Doppler fuze under sweep-jamming is established, and the method of fuze anti-jamming based on signal variational decomposition is proposed. The method uses total variation regularization to decompose the intermediate frequency signal into three components: pulse, low-frequency sine wave and high-frequency noise, and the pulse is retained and processed to detect the real target. The effectiveness of the method is verified by simulation. The findings demonstrate that, even in situations where the jamming signal ratio is between 0 and 20 dB, the approach can still successfully differentiate the target echo and jamming signal. It can also significantly enhance the pulse Doppler fuze's capacity for target recognition in sweep-jamming scenarios.

     

  • loading
  • [1]
    梁棠文, 李玉清, 蒲开忠, 等. 防空导弹引信设计及仿真技术[M]. 北京: 宇航出版社, 1995: 199-250.

    LIANG T W, LI Y Q, PU K Z, et al. Design and simulation technology of fuze for air defense missile[M]. Beijing: China Astronautic Publishing House, 1995: 199-250(in Chinese).
    [2]
    崔占忠, 宋世和, 徐立新. 近炸引信原理[M]. 第3版. 北京: 北京理工大学出版社, 2009: 112-119.

    CUI Z Z, SONG S H, XU L X. Principle of proximity fuze[M]. 3rd ed. Beijing: Beijing Insititute of Technology Press, 2009: 112-119(in Chinese).
    [3]
    赵惠昌. 无线电引信设计原理与方法[M]. 北京: 国防工业出版社, 2012: 153-162.

    ZHAO H C. Fundamentals and methodology of radio fuze[M]. Beijing: National Defense Industry Press, 2012: 153-162(in Chinese).
    [4]
    ANDREW D, WILLIAM O. ALQ-218(V)(ICAP III)[J]. Electronic Warfare Forecast, 2007(4): 24-29.
    [5]
    张旭东, 郑世举, 余德瑛. 国外无线电引信干扰机的发展状况[J]. 制导与引信, 2004, 25(4): 22-25. doi: 10.3969/j.issn.1671-0576.2004.04.006

    ZHANG X D, ZHENG S J, YU D Y. The development of radio fuze jammer abroad[J]. Guidance & Fuze, 2004, 25(4): 22-25(in Chinese). doi: 10.3969/j.issn.1671-0576.2004.04.006
    [6]
    谭显裕. 国外机载电子干扰吊舱的现状及发展[J]. 现代防御技术, 2004, 32(2): 66-72. doi: 10.3969/j.issn.1009-086X.2004.02.014

    TAN X Y. Current situation and development about airborne electronic jamming pod abroad[J]. Modern Defence Technology, 2004, 32(2): 66-72(in Chinese). doi: 10.3969/j.issn.1009-086X.2004.02.014
    [7]
    刘少坤, 闫晓鹏, 栗苹, 等. 脉冲多普勒引信抗周期调制干扰性能研究[J]. 北京航空航天大学学报, 2018, 44(5): 1018-1025.

    LIU S K, YAN X P, LI P, et al. Anti-periodic modulation jamming performance of pulse Doppler fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1018-1025(in Chinese).
    [8]
    李泽, 栗苹, 郝新红, 等. 脉冲多普勒引信抗有源噪声干扰性能研究[J]. 兵工学报, 2015, 36(6): 1001-1008. doi: 10.3969/j.issn.1000-1093.2015.06.006

    LI Z, LI P, HAO X H, et al. Anti-active noise jamming performance of pulse Doppler fuze[J]. Acta Armamentarii, 2015, 36(6): 1001-1008(in Chinese). doi: 10.3969/j.issn.1000-1093.2015.06.006
    [9]
    于洪海, 闫晓鹏, 贾瑞丽, 等. M序列伪码调相脉冲多普勒引信抗干扰性能研究[J]. 兵工学报, 2020, 41(3): 417-425. doi: 10.3969/j.issn.1000-1093.2020.03.001

    YU H H, YAN X P, JIA R L, et al. Research on anti-jamming performance of M-sequence pseudo-random code phase modulation pulse Doppler fuze[J]. Acta Armamentarii, 2020, 41(3): 417-425(in Chinese). doi: 10.3969/j.issn.1000-1093.2020.03.001
    [10]
    DAI J, HAO X H, LI Z, et al. Adaptive target and jamming recognition for the pulse Doppler radar fuze based on a time-frequency joint feature and an online-updated naive Bayesian classifier with minimal risk[J]. Defence Technology, 2022, 18(3): 457-466. doi: 10.1016/j.dt.2021.02.008
    [11]
    代健, 李泽, 郝新红, 等. 基于目标联合特征提取的脉冲多普勒引信抗干扰方法[J]. 兵工学报, 2019, 40(2): 225-233.

    DAI J, LI Z, HAO X H, et al. Anti-jamming method for pulse Doppler fuze based on joint feature extraction of target signal[J]. Acta Armamentarii, 2019, 40(2): 225-233(in Chinese).
    [12]
    陈齐乐, 郝新红, 闫晓鹏, 等. 基于谐波系数幅值平均的复合调制引信抗扫频式干扰方法[J]. 北京航空航天大学学报, 2020, 46(7): 1317-1324.

    CHEN Q L, HAO X H, YAN X P, et al. Anti sweep jamming method of hybrid modulation fuze based on harmonic coefficient amplitude averaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1317-1324(in Chinese).
    [13]
    DAUBECHIES I, LU J F, WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243-261. doi: 10.1016/j.acha.2010.08.002
    [14]
    HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A, 1998, 454(1971): 903-998. doi: 10.1098/rspa.1998.0193
    [15]
    CONDAT L. A direct algorithm for 1-D total variation denoising[J]. IEEE Signal Processing Letters, 2013, 20(11): 1054-1057. doi: 10.1109/LSP.2013.2278339
    [16]
    SELESNICK I, LANZA A, MORIGI S, et al. Non-convex total variation regularization for convex denoising of signals[J]. Journal of Mathematical Imaging and Vision, 2020, 62(6): 825-841.
    [17]
    CICONE A. Iterative filtering as a direct method for the decomposition of nonstationary signals[J]. Numerical Algorithms, 2020, 85(3): 811-827. doi: 10.1007/s11075-019-00838-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(251) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return