Zhou Yuanjun, Zhao Yunkun, Ge Yunhaiet al. Fault-tolerant control method and characteristic analysis of hydraulic redundant EMA system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(03): 285-289. (in Chinese)
Citation: Li Li, Ding Shuiting, Tao Zhi, et al. Heat transfer in complex passages of turbine blade trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(02): 202-205. (in Chinese)

Heat transfer in complex passages of turbine blade trailing edge

  • Received Date: 20 Jun 2004
  • Publish Date: 28 Feb 2005
  • An experimental comparison research of endwall heat transfer characteristics was conducted in the complex passages of turbine blade trailing edge by using thermochromic liquid crystal method. Three kinds of diaphragm plates between two passages were studied to obtain optimal heat transfer effect. Results indicate that the radial inflow cooling air in first passage passes through the orifices in the diaphragm plates ceaselessly then changes to spanwise cooling air, which impinges the second passage and flows away through the orifices along the trailing edge can enhance heat transfer of the trailing edge; uniform configuration of orifices in diaphragm plate provides better heat transfer effect than that of others.

     

  • [1] Brown A, Mandjikas B, Mudyiwa J M. Blade trailing edge heat transfer .ASME80-GT-45,1980 [2] Metzger D E, Shepard W B, Haley S W. Row resolved heat transfer variations in pin-fin arrays including effects of non-uniform arrays and flow convergence .ASME86-GT-132,1986 [3] Hwang J J, Lui C C. Detailed heat transfer characteristic comparison in straight and 90-deg turned trapezoidal ducts with pin-fin arrays [J]. International Journal of Heat and Mass Transfer,1999,42:4005~4016 [4] 顾维藻,张玉明,刘长春. 带孔板及扰流柱楔形通道内的流动及换热[J].航空动力学报,1989,4(4):373~379 Gu Weizao, Zhang Yuming, Liu Changchun. Flow visualization and heat transfer in trapezoidal ducts with orifice plate and pin-fin arrays [J].Journal of Aerospace Power,1989,4(4):373~379(in Chinese)
  • Relative Articles

    [1]LI Huan, CUI Pengcheng, JIA Hongyin, GONG Xiaoquan, WU Xiaojun. Numerical Simulation of TSTO Interstage Separation Considering Constraint Force[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0839
    [2]DENG J X,CHEN L,LU S T,et al. Damage distribution of composite structures of a certain type aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):920-930 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0379.
    [3]LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693.
    [4]LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813.
    [5]CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627.
    [6]XIAO L F,ZHOU L W,LI X D. Numerical simulation of deformed airfoil modal after blast shock wave[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):341-349 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0244.
    [7]ZHANG Pei-hong, JIA Hong-yin, ZHAO Jiao, WU Xiao-jun, ZHOU Gui-yu, ZHANG Yao-bing. Numerical simulation research on opposing jet interaction characteristics of rocket inverse flight[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0710
    [8]XIAO Yao, LI Yong, LI Dong-sheng, WANG Lei, JIANG Chao. Influence analysis of curing stress and stress relaxation on profile accuracy of carbon fiber reinforced composites tools[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0109
    [9]LI T S,WANG S K,WU Q,et al. Interface adjustment of aerospace-grade T800 carbon fiber composite material[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2011-2020 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0619.
    [10]LEI Chun-li, XUE Wei, FAN Gao-feng, SONG Rui-zhe, LIU Kai. Dynamic Modeling of Angular Contact Ball Bearing with Local Defects under EHL Considering Impact Force[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0335
    [11]YANG Z J,WANG G,ZHAO R J,et al. Dynamic analysis of deployment impact of trim-wing mechanism of Mars entry capsules[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):422-429 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0234.
    [12]XIA Y X,FANG Z G. Degradation-shock competing failure modeling considering randomness of failure threshold[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2079-2088 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0576.
    [13]XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0494.
    [14]ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424.
    [15]HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335.
    [16]PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0152.
    [17]ZHAO Z B,YANG Z W,LI Y,et al. Infrared radiation characteristics of carbon/glass hybrid composites under low-velocity impact[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):177-186 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0174.
    [18]GUO Qi, SHEN Xiaobin, LIN Guiping, ZHANG Shijuan. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081
    [19]WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039
    [20]ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3153) PDF downloads(848) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return