Citation: | Wu Zhong, Chou Wusheng. Steering law design for SGCMGs taking gimbal servo characteristics into account[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(06): 489-492. (in Chinese) |
[1] Niemeyer G, Slotine J-J E. Performance in adaptive manipulator control . The International Journal of Robotics Research, 1991, 10(2):149~161 [2]Slotine J-J E, Li W P. On the adaptive control of robot manipulators . The International Journal of Robotics Research, 1987, 6(3):49~59 [3]Gupta S, Luh J Y S. Closed-loop control of manipulators with redundant joints using the Hamilton-Jacobi-Bellman equations . In:Proceedings of the 1991 IEEE International Conference on Robotics and Automation . Washington:IEEE Computer Society Press, 1991. 472~477 [4]Dawson D M, Lewis F L, Dorsey J F. Robust force control of a robot manipulator[J]. The International Journal of Robotics Research, 1992, 11(4):312~319 [5]Guglielmo K, Sadegh N. Theory and implementation of a repetitive robot controller with Cartesian trajectory description[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1996, 118(2):15~21 [6]Seraji H. Configuration control of redundant manipulators:theory and implementation[J]. IEEE Transactions on Robotics and Automation, 1989, 5(4):472~490 [7]Novakovic Z R, Zlajpah L. Robust tracking control for robots using the sliding mode:a task-space approach . In:Rembold U, ed. Proceedings of IFAC Symposium on Robot Control'1988 . Oxford:Pergamon, 1988. 201~206 [8] Novakovic Z R.Lyapunov-like methodology for robot tracking control synthesis[J].International Journal of Control,1990,51(3):567~583 [9] 吴 忠, 吴宏鑫. SGCMG系统非奇异路径规划[J]. 控制理论与应用,1999, 16(1):21~26 Wu Zhong, Wu Hongxin. Nonsingular path planning in single gimbal control moment gyroscope systems[J]. Control Theory and Applications, 1999, 16(1):21~26(in Chinese) [10] 吴 忠, 吴宏鑫, 李 勇. SGCMG系统框架角轨迹跟踪自适应补偿控制 . 控制理论与应用,2001, 18(2):210~216 Wu Zhong, Wu Hongxin, Li Yong. Adaptive compensation control of trajectory tracking in gimbal angle space for single gimbal control moment gyroscope systems . Control Theory and Applications, 2001, 18(2):210~216(in Chinese)
|
[1] | YIN W Z,LIAN D P,LI K Y,et al. Manipulator force/position hybrid control based on staged adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):161-166 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0955. |
[2] | ZUO L,ZHANG X L,LI Z Y,et al. UAV control law design method based on active-disturbance rejection control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1512-1522 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0488. |
[3] | LIU S Y,YANG H L,ZHANG Z G,et al. Vibration control of flexible spacecraft with output constraints and external disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1560-1567 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0622. |
[4] | ZHANG Y L,MA Z Z,SHI L,et al. Multi-agent coverage control based on communication connectivity maintenance constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):519-528 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0340. |
[5] | GUAN Y Z,FENG M. Application of active disturbance rejection control in gyro motor steady speed control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):234-242 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0209. |
[6] | WANG C,CHEN W J,CHEN W H,et al. Design of suspension weight-support rehabilitation system adapted to fluctuation of human center of gravity[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2322-2330 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0605. |
[7] | SUN X Y,SHEN Q,WU S F. Output regulation adaptive drag-free control with enhanced Kinky Inference[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1604-1613 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0504. |
[8] | ZHANG Y,YU H,YANG X X,et al. Adaptive group formation tracking-containment control for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):97-109 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0264. |
[9] | SUN X M,MA X,LIU Y,et al. Adaptive sliding mode region reaching control for uncertain nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2482-2491 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0647. |
[10] | ZHAI You-hong, LI Chun-tao, SU Zi-kang, LI Xue-bing. Neural network incremental dynamic inversion target drone somersault maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0690 |
[11] | YAN Kun, ZHAO Jin-ze, CHEN Chao-bo, GAO Song, CAO Kai. Neural network-based fault tolerant control for unmanned helicopter with multiple actuator faults[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0699 |
[12] | YANG X X,JIANG Z J,ZHANG Y,et al. Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):61-76 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0174. |
[13] | ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341. |
[14] | SHI T X,CHEN L S,LI T S,et al. Distributed adaptive anti-disturbance control for power systems based on multi-agents[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1685-1692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0496. |
[15] | MA Z W,BAI H,CHEN H B,et al. RBF neural network robust adaptive control of quadrotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1620-1628 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0595. |
[16] | WANG C Y,YANG L M,LI Y H. A mapping leader formation control strategy for multiple mobile robots based on two-stage sliding mode control[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3108-3114 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0792. |
[17] | CHEN T T,WANG F Y,XIA C Y,et al. Tracking control of multi-agent systems based on persistent-hold mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3321-3327 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0065. |
[18] | LI C,HE Y Z,HU Y. Characteristic model control of nutation target contact detumbling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2977-2988 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0798. |
[19] | TANG Z Y,MA F Y,PEI Z C. Improved PSO-RBF neural network adaptive sliding mode control for quadrotor systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1563-1572 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0477. |
[20] | FU H Q,WU S F,LIU M L,et al. Disturbance-observer based adaptive control for space inertial sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2799-2806 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0734. |