ZHOU Yan-ze, WANG Chun-jie, LU Zhenet al. On the Free Vibration of High-Speed Ball Bearing Retainer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(5): 596-599. (in Chinese)
Citation: Qi Yi, Shen Shituan, Li Yihuaet al. Study for the best selection of rule conditions in automated extraction of fuzzy diagnostic rules[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(06): 506-511. (in Chinese)

Study for the best selection of rule conditions in automated extraction of fuzzy diagnostic rules

  • Received Date: 25 Jan 2003
  • Publish Date: 30 Jun 2004
  • In the machine learning of fuzzy rules for the diagnostic expert systems, the best selection of rule conditions is one of the most important steps. A new fuzzy nearness function was proposed, and the overlap degree of the rule conditions was evaluated to get an evaluated matrix with this function. An algorithm of the best selection for rule conditions or test points based on the evaluated matrix was designed. The simulation shows that the number of rule conditions, which has to be learned, is decreased largely, consequently, the workload of learning is reduced too. Further more, the method of the best selection of test points can do well to the design of automatic test.

     

  • [1] Rajan V, Jie Ying, Chakrabarty S, et al. Machine learning algorithms for fault diagnosis in analog circuits[J]. IEEE Systems, Man, and Cybernetics, International Conference, 1998, 2:1874~1879 [2]Russo M. A genetic approach to fuzzy learning . Neuro-Fuzzy Systems International Symposium , 1996. 9~16 [3]Ziarko W, Ning Shan. Machine learning:rough sets perspective . Expert Systems for Development, Proceedings of International Conference , 1994.114~118 [4] 戎月莉. 计算机模糊控制原理及应用[M]. 北京:北京航空航天大学出版社,1995 Rong Yueli. The theory and application of computer fuzzy control[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 1995(in Chinese) [5] 姜德华,强茂山,周尚洁. 模糊数学在水电工程造价估算中的应用[J]. 水力发电学报,2000,(2):87~94 Jiang Dehua, Qiang Maoshan, Zhou Shangjie. Application of fuzzy math in cost estimate of hydro-electrical projects[J]. Journal of Hydroelectric Engineering, 2000,(2):87~94(in Chinese) [6] 黄文虎,夏松波,刘瑞岩.设备故障诊断原理、技术及应用[M]. 北京:科学出版社,1997. 174 Huang Wenhu, Xia Songbo, Liu Ruiyan. The theory, technology and application of the diagnosis of equipments[M]. Beijing:Science Press, 1997. 174(in Chinese) [7] 肖健华,吴今培,陈世权. 基于故障诊断专家数据库系统的模糊模式识别 . 模糊系统与数学,1999,13(1):41~46 Xiao Jianhua, Wu Jinpei, Chen Shiquan. An approach to fuzzy pattern recognition based on the database fault diagnosis expert system[J]. Fuzzy Systems and Mathematics, 1999, 13(1):41~46(in Chinese)
  • Relative Articles

    [1]ZHAO X X,TAN H B,ZHAO H,et al. A consortium chain improvement model based on multi-chain collaboration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3283-3296 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0814.
    [2]ZHAO Jianyin, JIANG Jingwei, SUN Yuan, WEI Shuntao. Storage reliability assessment based on multivariate degradation failure and sudden failure Competition[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0601
    [3]LI Y,ZHANG X X,SUN F Q,et al. Belief reliability modeling for assembly accuracy of spaceborne SAR antenna deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):134-143 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0234.
    [4]MA X,XU S,SHANG P C,et al. Fault diagnosis of gearbox under open set and cross working condition based on transfer learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1753-1760 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0719.
    [5]WANG J H,TANG G D,CAO J,et al. Fault diagnosis method of BN ball mill rolling bearing based on AESL-GA[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1138-1146 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0428.
    [6]LI R Z,JIANG B,YU Z Q,et al. Data-driven fault detection and diagnosis for UAV swarms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1586-1592 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0441.
    [7]JIAO M X,LEI C L,MA S Z,et al. Fault diagnosis method of small sample rolling bearings under variable working conditions based on MTF-SPCNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3696-3708 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0927.
    [8]CAO J,YIN H N,LEI X G,et al. Bearing fault diagnosis in variable working conditions based on domain adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2382-2390 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0631.
    [9]ZHANG Y G,GUO X X,XUE W Y,et al. Research on multi-scale thermal safety of lithium-ion power battery system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):31-44 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0167.
    [10]ZHU Qi-tao, LI Hong-shuang. A mixed reliability analysis method based on direct probability integral[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0498
    [11]MA D,LIU Z H,GAO Q H,et al. Solenoid directional control valve fault pattern recognition based on multi-feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):913-921 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0367.
    [12]GAO H H,CHAO Q,XU Z,et al. Piston pump fault diagnosis based on Siamese neural network with small samples[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):155-164 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0213.
    [13]NIE X H,JIN L. Application of kernel principal component analysis in autonomous fault diagnosis for spacecraft flywheel[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2119-2128 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0582.
    [14]ZHU P R,LIU Y Z,LIU Z C,et al. Fault diagnosis of synchronous generator rotating rectifier based on CEEMD and improved ELM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1166-1175 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0376.
    [15]ZHAO J Y,HU J,YAO J Y,et al. EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1209-1221 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0416.
    [16]WANG J H,GAO Y,CAO J,et al. Fault diagnosis of generator rolling bearing based on AE-BN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1896-1903 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0581.
    [17]ZHANG Z,WANG P,ZHOU H Y. Reliability analysis of nozzle adjustment mechanism with interval distribution parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3377-3385 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0089.
    [18]WANG J H,ZHOU D Y,CAO J,et al. Fault diagnosis of ball mill rolling bearing based on multi-feature fusion and RF[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3253-3264 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0069.
    [19]WANG Y D,SUN Y F,LEI D Y,et al. Thermal oxidation reliability and structure optimization of thin film thermocouple[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):943-948 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0318.
    [20]LIU Jiufu, ZHANG Xinzhe, WANG Hengyu, TOMAS DIAS A.M., WANG Zhisheng, YANG Zhong. Partial observable Petri nets fault diagnosis with quantum Bayesian learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1125-1134. doi: 10.13700/j.bh.1001-5965.2021.0010
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.7 %FULLTEXT: 16.7 %META: 79.2 %META: 79.2 %PDF: 4.2 %PDF: 4.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 31.9 %其他: 31.9 %三明: 2.8 %三明: 2.8 %丹东: 2.8 %丹东: 2.8 %北京: 2.8 %北京: 2.8 %十堰: 1.4 %十堰: 1.4 %南京: 1.4 %南京: 1.4 %哥伦布: 2.8 %哥伦布: 2.8 %广州: 1.4 %广州: 1.4 %张家口: 2.8 %张家口: 2.8 %扬州: 4.2 %扬州: 4.2 %朝阳: 1.4 %朝阳: 1.4 %杭州: 2.8 %杭州: 2.8 %江门: 1.4 %江门: 1.4 %深圳: 12.5 %深圳: 12.5 %温州: 1.4 %温州: 1.4 %漯河: 15.3 %漯河: 15.3 %石家庄: 1.4 %石家庄: 1.4 %秦皇岛: 1.4 %秦皇岛: 1.4 %芒廷维尤: 4.2 %芒廷维尤: 4.2 %芝加哥: 1.4 %芝加哥: 1.4 %邯郸: 1.4 %邯郸: 1.4 %青岛: 1.4 %青岛: 1.4 %其他三明丹东北京十堰南京哥伦布广州张家口扬州朝阳杭州江门深圳温州漯河石家庄秦皇岛芒廷维尤芝加哥邯郸青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(4081) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return