Volume 27 Issue 5
May  2001
Turn off MathJax
Article Contents
SONG Ming-gang, FAN Shang-chun. A Combined Method of High Precision Temperature Control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(5): 560-563. (in Chinese)
Citation: SONG Ming-gang, FAN Shang-chun. A Combined Method of High Precision Temperature Control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(5): 560-563. (in Chinese)

A Combined Method of High Precision Temperature Control

  • Received Date: 16 Mar 2000
  • Publish Date: 31 May 2001
  • A combined method of high precision temperature control and its application in a constant temperature trough were presented. Combining Fuzzy logic with intelligent PID control of expert type, the method fully utilizes the expert's experience of manual manipulating and quantitative operating feature of PID control. Therefore, it could meet the precision and adjusting time requirements in high precision temperature control. Moreover, a novel and simple model to modify PID parameters and a method to predict the change of temperature on-line were introduced, which are easy to implement. When used in a constant temperature trough, the control accuracy of the combined method is even smaller than 0.01℃.

     

  • loading
  • [1] Dayhoff J. Neural network architectures: an introduction[M]. New York:Van Nostrand Reinhold, 1990. [2] Zurada J M. Introduction to artificial neural systems[M]. New York: West Publ, 1992. [3] Roy S,  Anantheswaran R, Shenk J. Determination of moisture content of mushrooms by spectroscopy[J]. J Sci Food Agric, 1993,63(3):355~360. [4] Delwiche S,Mckenzie K,Webb B. Quality characteristics in rice by NIR reflectance analysis of wholegrain milled samples[J]. Cereal Chem,1996,73(2):257~263. [5] Zhang Y,Kovacevic R. Realtime sensing of sag geometry during GTA welding[J]. Journal of Manufacturing Science and Engineering,1997,119(2):151~160. [6] Theodoracatos V E, Calkins D E. A 3-D vision system model for automatic object surface sensing[J]. International Journal of Computer Vision,1993,11(1):75~99. [7] 邓文怡,吕乃光. 三维测量技术中采用的反向传播神经网络方法[J]. 华中理工大学学报,1999,27(1):78~80. [8] Chang M,Tai W. 360-deg profile noncontact measurement using a neural network[J]. Optical Engineering,1995,34(12):3572~3576. [9] 任大海. X射线实时成象检测技术及其在焊缝探伤中应用的研究 . 天津:天津大学研究生院, 1998. [10] 杨国田,张 玉. 基于神经网络的表面粗糙度识别算法在单片机系统上的实现[J].仪器仪表学报,1998,19(6):645~647. [11] 熊有伦. 精密测量的数学方法[M]. 北京: 中国计量出版社,1989. [12] 田社平, 林良明. 基于神经网络的球半径测量[J]. 计量学报, 1998,19(3):170~174.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2588) PDF downloads(845) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return