Citation: | Han Jinquan, Wan Min, Yuan Sheng, et al. Design method for surface of stretching tool for complex aircraft skin[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(11): 1360-1363. (in Chinese) |
A design method based on equilong section lines for tool surface in complex aircraft skin stretching was proposed to improve the strain distribution of blank during stretching, against the lack of practical and detailed design methods for tool surface in complex aircraft skin stretching. In this method, section lines of tool surface along stretching direction were designed as equilong as possible by adjustment of process addendum to gain approximate elongations on all section lines of blank after stretching, and then curvature and tangent directions were adjusted to obtain uniform strain distribution on blank after stretching and decrease or avoid appearance of failings relative strain distribution. This design method was verified to be of feasibility and validity by the design of a tool surface for a complex aircraft skin stretching and the strain distribution obtained by finite element method (FEM).
[1] | WU H,ZHENG Y G,LIU M,et al. Overall design method of ground test equipment for engine dynamic air bleed of aircraft environmental control system[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):573-583 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0014. |
[2] | LI Yaohua, CHEN Jie. Aircraft Skin Damage LHN-YOLO Small Target Detection Algorithm Incorporating Attention Mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0713 |
[3] | LI Zhi-qiang, WANG Yang, XIN Li-biao. Structural Design and Aerodynamic Performance Analysis of Gradient Hexagonal Deformable Wing Ribs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0669 |
[4] | CUI Y P,LI Z H,ZHENG G L. Computing convex hull of a generic polygon with simulation of progressive support for an elastic line[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):216-223 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0246. |
[5] | WEI Kun-yu, LI Chen-di, LI Bo-wen, YUAN Yuan, HE Xiao-fan. Research on Developing Design Gust Load Spectrum for Bomber-Mounted Air-to-Ground Missiles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0126 |
[6] | XU J Q,LIN H P,GUO H. Multi-layer wave-shaped topology and thermal design method for aero-electric propulsion motors[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1806-1818 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0498. |
[7] | YANG Gong-peng, ZHOU Zheng-gan, MA Teng-fei, WANG Jun, LI Yang, ZHOU Wen-bin. Research on finite element simulation modeling for ultrasonic testing of coarse-grained materials[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0676 |
[8] | CHEN Shi, XU He-ming, SUN Kai, XU Yi-han, ZHANG Yi-shang. Prediction of creep strain of turbine blades based on finite element nodes[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0639 |
[9] | YANG Z G,KE Z S,YANG X W,et al. Analysis of effect of construction process on electrical properties of composite skins[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3013-3020 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0763. |
[10] | ZHANG Pei-hong, JIA Hong-yin, ZHAO Jiao, WU Xiao-jun, ZHOU Gui-yu, ZHANG Yao-bing. Numerical simulation research on opposing jet interaction characteristics of rocket inverse flight[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0710 |
[11] | SUN Xiao-kun, CHEN Yang, HU Can-bin, XIANG De-liang. SAR target recognition method under limited measured sample conditions[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0648 |
[12] | HAN X,WANG Y X,CHENG X C,et al. A decentralized multi-sensor fusion estimator using finite memory buffers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):335-343 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0240. |
[13] | ZHANG Yuan, HUANG Wanwei, LU Kunfeng, BAI Wenyan, YU Jianglong. Modeling and finite-time control for hypersonic morphing flight vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993. doi: 10.13700/j.bh.1001-5965.2021.0701 |
[14] | HONG Zheng, YE Zhengyin. Numerical investigation on evolution of T-S wave on a two-dimensional compliant wall with finite length[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1190-1199. doi: 10.13700/j.bh.1001-5965.2021.0030 |
[15] | GONG Xiaoquan, WU Xiaojun, TANG Jing, LI Ming, ZHANG Jian. Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1889-1898. doi: 10.13700/j.bh.1001-5965.2021.0046 |
[16] | XU Menghui, QIU Zhiping. Parametric finite element meshing and adjustment for delta wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1659-1665. doi: 10.13700/j.bh.1001-5965.2014.0641 |
[17] | Bao Nuo, Wang Chunjie. Structural finite element model updating based on response surface optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7): 927-933. doi: 10.13700/j.bh.1001-5965.2013.0525 |
[18] | Wang Kun, Wan Min, Hua Cheng, Shao Xufen. Determination and application of coarse-grain critical pre-strain curve to aluminum alloy stretch forming[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 508-511,516. |
[19] | Wang Lili, Li Dongsheng, Li Xiaoqiang, Luo Hongyu. Die-face compensation algorithm in stretch forming of aircraft skin over reconfigurable compliant tooling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(8): 1011-1016,1020. |
[20] | Zhang Yidu, Zhang Hongwei. Finite element simulation of machining deformation for aeronautical monolithic component[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 188-192. |