Gao Hongzhi, Zhou Xianbin. Forming limits for as-quenched aluminum alloy sheet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(09): 1083-1086. (in Chinese)
Citation: Gao Hongzhi, Zhou Xianbin. Forming limits for as-quenched aluminum alloy sheet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(09): 1083-1086. (in Chinese)

Forming limits for as-quenched aluminum alloy sheet

  • Received Date: 25 Oct 2005
  • Publish Date: 30 Sep 2006
  • FLD(forming limit diagram) was influenced by the material properties as well as forming process, such as strain path and heat-treatment states, etc. Some experimental FLDs were constructed for 2D12 aluminum alloy in the annealed, pre-strained and various aging time conditions after solution heat-treatment by rigid punch bulging. Based on the experimental results, the FLSD (forming limit stress diagram) was determined. By comparing and analyzing the FLD and FLSD, it is indicated that the FLD of annealed condition is higher than the FLD after heat-treatment and the aging hardening lowers the FLD. The results mainly dependon the metallurgical structure transformation during solution heat treatment and the decrease of hardening value n with aging. Furthermore, aging hardening lowers the FLSD mostly because it lowers the FLD. The result may be available for the sheet forming process design and numerical simulation.

     

  • [1] 《中国航空材料手册》编辑委员会.中国航空材料手册(第三卷)[M].北京:中国标准出版社,2002 Aeronautical Materials Handbook of China Compilation Committee. Aeronautical materials handbook of China(third volume) [M]. Beijing:Standards Press of China, 2002(in Chinese) [2] 高宏志,周贤宾,李东升.硬铝合金预拉伸、热处理后成形性能的正交试验研究[J].航空材料学报,2004,24(4):1-7 Gao Hongzhi, Zhou Xianbin, Li Dongsheng. Drthogonal test study of formability for 2D12 alumininm alloy after pre-stretch and solution heat-treatment[J].Journal of Aeronautical Materials, 2004,24(4):1-7(in Chinese) [3] Graf A, Hosford W. Effect of changing strain path on forming limit diagram of Al2008-T4[J].Metallurgical Materials Transaction,1993,24A(9):2503-2512 [4] 谢英,万敏,韩非.成形极限应变与成形极限应力的转换关系[J].塑性工程学报,2004,11(3):55-58 Xie Ying, Wan Min, Han Fei. Transformation relation between limit strain and limit stress in sheet metal forming[J].Journal of Plasticity Engineering, 2004,11(3):55-58(in Chinese) [5] Obermeyer E J,Majlessi S A. A review of recent advances in the application of blank-holder force towards improving the forming limits of sheet metal parts[J]. Journal of Materials Processing Technology,1998(75):222-234 [6] Kleemola J, Pelkkikangas M T. Effect of an intrinsic forming limit of steel copper and brass[J]. Sheet Metal Industry,1977(63):591-599 [7] Arrieus R, Bdrin C, Boivin M. Determination of an intrinsic forming limit stress diagram for isotropic sheets P Timossi. 12th Biennial IDDRG Congress. Santa Margherita:International Deep Drawing Research Group, 1982:61-71 [8] 张京,周贤宾.板料成形极限应力图的研究 中国机械工程学会锻压学会.第七届全国锻压学术年会.北京:航空工业出版社,1999:299-302 Zhang Jing, Zhou Xianbin. Study of forming limit stress in sheet metal forming Chinese Mechanical Engineering Society Forging and Stamping Institution.The 7th China Conference on Foging and Stamping. Beijing:Aviation Industry Press,1999:299-302(in Chinese) [9] Gronostajski J. Sheet metal forming limits for complex strain paths[J]. Journal of Materials Processing Technology,1984 (10):349-362
  • Relative Articles

    [1]GAO Hongxin, ZHAO Shougen, ZHU Jialin, YU Yihao, ZHANG Zhen. Research on Measurement Methods for the Critical Bending Radius of Flexible Solar Cells[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0801
    [2]WEI J R,WU Q,WU W,et al. Study on global stability of aluminum alloy honeycomb cylinder under axial compression[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):962-972 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0135.
    [3]SU Jinxin, XI Ziyan, DAI Yuting. Nonlinear fluid-structure interaction response analysis of a large flexible wing under strong gusts[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0278
    [4]BAI Jianfeng, MENG Junhui, ZHANG Lili, WEI Shechun, MA Nuo. Dynamic performances research of the wing deployment considering fluid structure interaction[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0645
    [5]WU L,TENG J F,LYU Y L,et al. Experimental study on kinetics of TLP diffusion bonding of GH3230 alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2595-2600 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0644.
    [6]LIU D J,TIAN G,LI Y L,et al. Research on pre-corrosion fatigue properties of 2195 Al-Li alloys in 30% HNO3[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1129-1137 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0445.
    [7]GUO Y,LIU D J,CHANG X L,et al. Corrosion behavior of 2195-T8 aluminum-lithium alloy with artificial defects in 30% HNO3[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):896-903 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0344.
    [8]PANG C,LIU D J,TIAN G,et al. Experimental and simulation study on fatigue multi crack fusion of 2195-T8 Al-Li alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):350-358 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0249.
    [9]ZHANG Yun, LIU Jingqing, CHENG Geng, LEI Xin, XU Zhiyong. Establishment and Experimental Study of Polishing Model for Titanium Alloy Front and Rear Edges[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0541
    [10]LI X Q,ZHANG H G,WANG S,et al. Development and experimental of friction tester for aluminum alloy sheet stamping[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1898-1910 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0542.
    [11]FANG Z N,LIU C,ZHANG C Q,et al. Influencing analysis of temperature controlling accuracy of loop heat pipes and capillary limit prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3788-3793 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0886.
    [12]LIU Chun-lei, MENG Bao, ZHU Yu, YAN Bin-yu, WAN Min. Multi-steps hydroforming technology of small diameter C-shaped metallic seal ring[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0839
    [13]FAN X,CHENG Z H,LI S X,et al. Effect of critical eccentricity on forming accuracy of tubes in 3D free bending process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):208-215 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0221.
    [14]ZHANG X M,NIE P F,GAO Z B,et al. Influence of temperature stress on fatigue damage of airfield pavement slab[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2558-2566 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0729.
    [15]HAN X,SUN Z F,GENG D X,et al. Experiment research on high-speed ultrasonic vibration milling of titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1707-1714 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0519.
    [16]WANG Hong-yong, MA Li-shu, XU Ping. Research on Identification Method of Key Aircraft Based on Temporal Networktime network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0259
    [17]ZHAO Yue-qing, LIN De-zhi, CHEN Hui, TANG Jia-li, CHEN Ping. Performance test and constitutive model selection of diaphragms in hot diaphragm forming[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0350
    [18]ZHANG S,HE Y T,NI B,et al. Effect of nitrate on exfoliation corrosion of 2A12-T4 aluminum alloy under full-immersion corrosion condition[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1372-1382 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0473.
    [19]LI Yongchang, DAI Yuting, YANG Chao. Fluid and structure coupling analysis of split drag rudder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2494-2501. doi: 10.13700/j.bh.1001-5965.2021.0151
    [20]XU Haiying, YANG Guang, ZHANG Wei, YANG Bo, SANG Xinghua, WANG Zhuang. Properties of gas discharge electron beam coaxial wire of fuse additive manufacturing and microstructure of TC4 titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2373-2380. doi: 10.13700/j.bh.1001-5965.2021.0147
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3081) PDF downloads(1218) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return