留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速热化学非平衡对气动热环境影响

杨建龙 刘猛 阿嵘

杨建龙, 刘猛, 阿嵘等 . 高超声速热化学非平衡对气动热环境影响[J]. 北京航空航天大学学报, 2017, 43(10): 2063-2072. doi: 10.13700/j.bh.1001-5965.2016.0952
引用本文: 杨建龙, 刘猛, 阿嵘等 . 高超声速热化学非平衡对气动热环境影响[J]. 北京航空航天大学学报, 2017, 43(10): 2063-2072. doi: 10.13700/j.bh.1001-5965.2016.0952
YANG Jianlong, LIU Meng, A Ronget al. Influence of hypersonic thermo-chemical non-equilibrium on aerodynamic thermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2063-2072. doi: 10.13700/j.bh.1001-5965.2016.0952(in Chinese)
Citation: YANG Jianlong, LIU Meng, A Ronget al. Influence of hypersonic thermo-chemical non-equilibrium on aerodynamic thermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2063-2072. doi: 10.13700/j.bh.1001-5965.2016.0952(in Chinese)

高超声速热化学非平衡对气动热环境影响

doi: 10.13700/j.bh.1001-5965.2016.0952
详细信息
    作者简介:

    杨建龙  男, 博士研究生。主要研究方向:高超声速飞行器气动力/热数值计算、结构热防护设计、流-固-热耦合

    刘猛  男, 博士, 教授, 硕士生导师。主要研究方向:飞行器环境控制、结构热防护设计

    阿嵘  女, 博士研究生。主要研究方向:飞行器环境控制、热系统优化设计

    通讯作者:

    刘猛, E-mail: liumeng@buaa.edu.cn

  • 中图分类号: V221+.3;TB553

Influence of hypersonic thermo-chemical non-equilibrium on aerodynamic thermal environments

More Information
  • 摘要:

    高超声速气动加热严重,考虑热化学非平衡对气动热环境影响,可以为热防护系统设计提供有效保障。采用Park和Gupta热化学非平衡模型,数值计算研究5组元(N2,O2,N,O,NO),17组化学反应的热化学非平衡效应对高超声速飞行器气动热环境影响,并与完全气体和热化学平衡模型进行对比分析。热化学非平衡模型流场温度及激波距离均比完全气体模型小。激波后气体密度因离解、化学反应而增大,且气体密度越大,激波距离越小,热化学平衡模型激波距离最小。完全气体和热化学平衡模型热流载荷计算值均比实验值偏大。Park和Gupta热化学非平衡模型数值计算激波距离及气动力载荷差别小。Park模型热流载荷计算值偏大,Gupta模型与实验结果相符,它可对气动热环境可靠预测。

     

  • 图 1  完全气体与热化学非平衡气体模型马赫数

    Figure 1.  Mach numbers of perfect gas and thermo-chemical non-equilibrium gas models

    图 2  驻点线气体密度比

    Figure 2.  Gas density ratios along stagnation point line

    图 3  完全气体模型静温与热化学非平衡气体模型平动-转动温度

    Figure 3.  Static temperatures of perfect gas model and translational-rotational temperatures of thermo-chemical non-equilibrium gas model

    图 4  驻点线不同温度分布

    Figure 4.  Different temperature distributions along stagnation point line

    图 5  完全气体模型与热化学非平衡气体模型壁面压强和热流密度

    Figure 5.  Wall pressures and heat fluxes of perfect gas and thermo-chemical non-equilibrium gas models

    图 6  数值计算网格模型

    Figure 6.  Grid model for numerical calculation

    图 7  热化学平衡与非平衡气体模型流场平动-转动温度

    Figure 7.  Flow field translational-rotational temperatures of thermo-chemical equilibrium and non-equilibrium gas models

    图 8  热化学平衡与非平衡气体模型壁面压强和热流密度

    Figure 8.  Wall pressures and heat fluxes of thermo-chemical equilibrium and non-equilibrium gas models

    图 9  气体组元沿驻点线质量分数

    Figure 9.  Gas species' mass fraction along stagnation point line

    图 10  Park与Gupta模型壁面热流密度分布

    Figure 10.  Wall heat flux distributions of Park's and Gupta's model

    图 11  壁面压强沿背风与迎风线分布

    Figure 11.  Distribution of wall pressures along leeward and windward lines

    图 12  壁面热流密度沿背风与迎风线分布

    Figure 12.  Distribution of wall heat fluxes along leeward and windward lines

    表  1  Gupta化学反应模型

    Table  1.   Gupta's chemical reaction model

    化学反应式 Af/(cm3·(mol·s)-1) Bf Cf/K
    N2+M1⇌2N+M1 1.92×1017 -0.5 113 100
    N2+N⇌2N+N 4.15×1022 -1.5 113 100
    O2+M2⇌2O+M2 3.61×1018 -1 59 400
    NO+M2⇌N+O+M2 3.97×1020 -1.5 75 600
    N2+O⇌NO+N 6.75×1013 0 37 500
    NO+O⇌O2+N 3.18×109 1 19 700
      注:M1=N2, O2, O, NO; M2=N2, O2, N, O, NO。
    下载: 导出CSV

    表  2  Park化学反应模型

    Table  2.   Park's chemical reaction model

    化学反应式 Af/(cm3·(mol·s)-1) Bf Cf/K
    N2+M1⇌2N+M1 3.0×1022 -1.6 113 200
    N2+M2⇌2N+M2 7.0×1021 -1.6 113 200
    O2+M1⇌2O+M1 1.0×1022 -1.5 59 360
    O2+M2⇌2O+M2 2.0×1021 -1.5 59 360
    NO+M3⇌N+O+M3 1.1×1017 0 75 500
    NO+M4⇌N+O+M4 5.0×1015 0 75 500
    N2+O⇌NO+N 5.7×1012 0.42 42 938
    NO+O⇌O2+N 8.4×1012 0 19 400
      注:M1=N, O; M2=N2, O2, NO; M3=N, O, NO; M4=N2, O2
    下载: 导出CSV
  • [1] SCALABRIN L C, BOYD I D.Numerical simulation of weakly ionized hypersonic flow for reentry configurations:AIAA-2006-3773[R].Reston:AIAA, 2006.
    [2] PANDOLFI M, ARINA R, BOTTA N.Nonequilibrium hypersonic flows over corners[J].AIAA Journal, 1991, 29(2):235-241. doi: 10.2514/3.10569
    [3] FREDERICKSON K, LEONOV S, NISHIHARA M, et al.Energy conversion in high enthalpy flows and non-equilibrium plasmas[J].Progress in Aerospace Sciences, 2015, 72:49-65. doi: 10.1016/j.paerosci.2014.09.004
    [4] AIT-ALI-YAHIA D, HABASHI W G.Finite element adaptive method for hypersonic thermochemical nonequilibrium flows[J].AIAA Journal, 1997, 35(8):1294-1302. doi: 10.2514/2.260
    [5] YUMUSAK M, EYI S.Aerothermodynamic shape optimization of hypersonic blunt bodies:AIAA-2013-2693[R].Reston:AIAA, 2013.
    [6] BHUTTA B A, LEWIS C H.Three-dimensional hypersonic nonequilibrium flows at large angles of attack[J].Journal of Spacecraft and Rockets, 1989, 26(3):158-166. doi: 10.2514/3.26048
    [7] ZOBY E V, LEE K P, GUPTA R N, et al.Viscous shock-layer solutions with nonequilibrium chemistry for hypersonic flows past slender bodies[J].Journal of Spacecraft and Rockets, 1989, 26(4):221-228. doi: 10.2514/3.26058
    [8] PEZZELLA G, VOTTA R.Finite rate of chemistry effects on the high altitude aerodynamics of an Apollo-shaped reentry capsule:AIAA-2009-7306[R].Reston:AIAA, 2009.
    [9] 柳军, 刘伟, 曾明, 等.高超声速三维化学非平衡流场的数值模拟[J].力学学报, 2003, 35(6):730-734. http://youxian.cnki.com.cn/yxdetail.aspx?filename=HKXB20170831005&dbname=CAPJ2015

    LIU J, LIU W, ZENG M, et al.Numerical simulation of 3D hypersonic thermochemical nonequilibrium flow[J].Acta Mechanica Sinica, 2003, 35(6):730-734(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=HKXB20170831005&dbname=CAPJ2015
    [10] 董维中, 丁明松, 高铁锁, 等.热化学非平衡模型和表面温度对气动热计算影响分析[J].空气动力学学报, 2013, 31(6):692-698. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201306002.htm

    DONG W Z, DING M S, GAO T S, et al.The influence of thermo-chemical non-equilibrium model and surface temperature on heat transfer rate[J].Acta Aerodynamica Sinica, 2013, 31(6):692-698(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201306002.htm
    [11] 李康, 胡宗民, 姜宗林.热化学非平衡流动中粘性干扰和化学反应对HB2气动力的影响[J].中国科学:物理学, 力学和天文学, 2015, 45(4):044702. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201504008.htm

    LI K, HU Z M, JIANG Z L.Effect of viscosity and chemical reactions on aerodynamic force in chemical nonequilibrium flow[J].Scientia Sinica:Physica, Mechanica & Astronomica, 2015, 45(4):044702(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201504008.htm
    [12] 周禹, 阎超.高超声速热化学非平衡空间格式的扩展与改进[J].北京航空航天大学学报, 2010, 36(2):193-197. http://bhxb.buaa.edu.cn/CN/abstract/abstract8534.shtml

    ZHOU Y, YAN C.Extension and improvement for schemes in hypersonic thermal and chemical non-equilibrium flows[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(2):193-197(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract8534.shtml
    [13] 周印佳, 孟松鹤, 解维华, 等.高超声速飞行器热环境与结构传热的多场耦合数值研究[J].航空学报, 2016, 37(9):2739-2748. http://youxian.cnki.com.cn/yxdetail.aspx?filename=HKXB20170426001&dbname=CAPJ2015

    ZHOU Y J, MENG S H, XIE W H, et al.Multi-field coupling numerical analysis of aerothermal environment and structural heat transfer of hypersonic vehicles[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2739-2748(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=HKXB20170426001&dbname=CAPJ2015
    [14] FORD D I, JOHNSON R E.Dependence of rate rate constants on vibrational temperatures:An arrhenius description:AIAA-1988-0461[R].Reston:AIAA, 1988.
    [15] GUPTA R N, YOS J M, THOMPSON R A, et al.A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000K:NASA RP-1232[R].Washington, D.C.:NASA, 1990.
    [16] PARK C.On convergence of computation of chemical reacting flows:AIAA-1985-0247[R].Reston:AIAA, 1985.
    [17] PARK C.Problems of rate chemistry in the flight regimes of aeroassisted orbital transfer vehicles:AIAA-1984-1730[R].Reston:AIAA, 1984.
    [18] CANDLER G V, MACCORMACK R W.The computation of hypersonic ionized flows in chemical and thermal nonequilibrium:AIAA-1988-0511[R].Reston:AIAA, 1988.
    [19] WILKE C R.A viscosity equation for gas mixtures[J].Journal of Chemical Physics, 1950, 18(4):517-519. doi: 10.1063/1.1747673
    [20] YOON B, RASMUSSEN M L.Diffusion effects in hypersonic flows with a ternary mixture[J].KSME International Journal, 1999, 13(5):432-442. doi: 10.1007/BF02939331
    [21] MACLEAN M, MARINEAU E, PARKER R, et al.Effect of surface catalysis on measured heat transfer in expansion tunnel facility[J].Journal of Spacecraft and Rockets, 2013, 50(2):470-474. doi: 10.2514/1.A32327
    [22] HORNUNG H G, WEN C Y.Nonequilibrium dissociationg flow over spheres:AIAA-1995-0091[R].Reston:AIAA, 1995.
    [23] STEWART D A, CHEN Y K.Hypersonic convective heat transfer over 140-deg blunt cones in different gases[J].Journal of Spacecraft and Rockets, 1994, 31(5):735-743. doi: 10.2514/3.26506
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  420
  • HTML全文浏览量:  2
  • PDF下载量:  444
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-19
  • 录用日期:  2017-03-17
  • 刊出日期:  2017-10-20

目录

    /

    返回文章
    返回
    常见问答