留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非标称对流层误差对GBAS完好性的影响

辛蒲敏 王志鹏

辛蒲敏, 王志鹏. 非标称对流层误差对GBAS完好性的影响[J]. 北京航空航天大学学报, 2017, 43(9): 1882-1890. doi: 10.13700/j.bh.1001-5965.2016.0665
引用本文: 辛蒲敏, 王志鹏. 非标称对流层误差对GBAS完好性的影响[J]. 北京航空航天大学学报, 2017, 43(9): 1882-1890. doi: 10.13700/j.bh.1001-5965.2016.0665
XIN Pumin, WANG Zhipeng. Impact of non-nominal troposphere error on GBAS integrity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1882-1890. doi: 10.13700/j.bh.1001-5965.2016.0665(in Chinese)
Citation: XIN Pumin, WANG Zhipeng. Impact of non-nominal troposphere error on GBAS integrity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1882-1890. doi: 10.13700/j.bh.1001-5965.2016.0665(in Chinese)

非标称对流层误差对GBAS完好性的影响

doi: 10.13700/j.bh.1001-5965.2016.0665
基金项目: 

国家自然科学基金 61501010

航空科学基金 2015ZC51035

北京市自然科学基金 4154078

详细信息
    作者简介:

    辛蒲敏  女, 硕士研究生; 主要研究方向:导航和GBAS性能评估

    王志鹏  男, 博士, 讲师, 硕士生导师; 主要研究方向:卫星导航民航/军航/通航应用的完好性监测技术

    通讯作者:

    王志鹏, E-mail:wangzhipeng@buaa.edu.cn

  • 中图分类号: V249.3

Impact of non-nominal troposphere error on GBAS integrity

Funds: 

National Natural Science Foundation of China 61501010

Aeronautical Science Foundation of China 2015ZC51035

Natural Science Foundation of Beijing 4154078

More Information
  • 摘要:

    地基增强系统(GBAS)中,非标称对流层误差引起的平均垂直保护级(VPL)增量为2.29 m,误差包络精度降低,系统完好性风险增大。针对上述问题,基于修正的Hopfield模型,综合考虑天气和卫星仰角实时变化情况,以及飞机与地面站的实时距离,提出一种实时计算非标称对流层误差的方法;鉴于该方法对甚高频频数据播发(VDB)传输带宽要求较高,提出拟合计算方法,将实时误差拟合为距离和卫星仰角的函数。仿真计算单点、进近区和终端区3种飞行场景下的VPL,分析非标称对流层误差对GBAS完好性的影响,结果表明:采用实时计算方法时,平均VPL增量为1.55 m,非标称对流层误差的包络精度提高32.52%;采用拟合计算方法时,平均VPL增量为1.27 m,包络精度提高44.54%,VDB传输数据减少,GBAS完好性风险降低。

     

  • 图 1  非标称对流层误差模型

    Figure 1.  Non-nominal troposphere error model

    图 2  非标称对流层误差与卫星仰角之间的关系

    Figure 2.  Relationship between non-nominal troposphere error and satellite elevation angle

    图 3  非标称对流层误差

    Figure 3.  Non-nominal troposphere error

    图 4  仿真区域

    Figure 4.  Simulation regions

    图 5  传统包络方法下VPL(GPS当前星座,GAST D)

    Figure 5.  VPL with traditional bounding method (current GPS constellation, GAST D)

    图 6  传统包络方法下VPL(全球BDS星座,GAST D)

    Figure 6.  VPL with traditional bounding method (global BDS constellation, GAST D)

    图 7  实时包络方法流程图

    Figure 7.  Flowchart of real-time bounding method

    图 8  实时包络方法下VPL(GPS当前星座,GAST D)

    Figure 8.  VPL with real-time bounding method (current GPS constellation, GAST D)

    图 9  实时包络方法下VPL(全球BDS星座,GAST D)

    Figure 9.  VPL with real-time bounding method(global BDS constellation, GAST D)

    图 10  非标称对流层误差的拟合结果

    Figure 10.  Fitting results of non-nominal troposphere error

    图 11  拟合包络方法下VPL(GPS当前星座,GAST D)

    Figure 11.  VPL with fitting bounding method(current GPS constellation, GAST D)

    图 12  拟合包络方法下VPL(全球BDS星座,GAST D)

    Figure 12.  VPL with fitting bounding method(global BDS constellation, GAST D)

    表  1  垂直告警限

    Table  1.   Vertical alert limit

    垂直告警限 H/m
    FASVAL H≤60.96
    0.095965 H+FASVAL-5.85 60.96 < H≤408.432
    FASVAL+33.35 H > 408.432
    下载: 导出CSV

    表  2  传统包络方法下保护级(PL)平均增量

    Table  2.   Average increase of protection level (PL) with traditional bounding method

    星座 进近类型 PL平均增量/m
    单点 单次进近 终端区
    区域BDS GAST C 1.91 1.67 2.26(VPL)
    GAST D 1.79 1.73 2.17(LPL)
    全球BDS GAST C 2.08 2.50 3.00(VPL)
    GAST D 1.09 1.72 1.80(LPL)
    标准GPS GAST C 2.01 2.47 2.87(VPL)
    GAST D 1.51 1.86 1.95(LPL)
    当前GPS GAST C 2.18 2.43 2.96(VPL)
    GAST D 2.09 2.52 2.94(LPL)
    下载: 导出CSV

    表  3  实时包络方法下PL平均增量

    Table  3.   Average increase of PL with real-time bounding method

    星座 进近类型 PL平均增量/m
    单点 单次进近 终端区
    区域BDS GAST C 1.42 1.33 1.63(VPL)
    GAST D 1.39 1.15 1.27(LPL)
    全球BDS GAST C 1.64 1.60 2.04(VPL)
    GAST D 1.56 1.27 1.48(LPL)
    标准GPS GAST C 1.71 1.62 1.99(VPL)
    GAST D 1.41 1.22 1.29(LPL)
    当前GPS GAST C 1.81 1.66 1.96(VPL)
    GAST D 1.54 1.31 1.32(LPL)
    下载: 导出CSV

    表  4  实时包络方法下包络精度平均提高量

    Table  4.   Average increase of bounding accuracy with real-time bounding method

    星座 进近类型 包络精度平均提高量/%
    单点 单次进近 终端区
    区域BDS GAST C 16.31 27.92 32.24(VPL)
    GAST D 28.40 36.90 40.32(LPL)
    全球BDS GAST C 12.30 26.42 31.20(VPL)
    GAST D 34.60 36.39 40.42(LPL)
    标准GPS GAST C 18.22 23.12 28.28(VPL)
    GAST D 35.30 40.80 35.52(LPL)
    当前GPS GAST C 27.22 33.34 35.34(VPL)
    GAST D 40.41 45.31 55.20(LPL)
    下载: 导出CSV

    表  5  拟合包络方法下的PL平均增量

    Table  5.   Average increase of PL with fitting bounding method

    星座 进近类型 PL平均增量/m
    单点 单次进近 终端区
    区域BDS GAST C 1.03 1.19 1.33(VPL)
    GAST D 0.85 1.07 1.14(LPL)
    全球BDS GAST C 1.20 1.37 1.64(VPL)
    GAST D 1.07 1.26 1.28(LPL)
    标准GPS GAST C 1.32 1.51 1.79(VPL)
    GAST D 1.01 1.09 1.21(LPL)
    当前GPS GAST C 1.36 1.61 1.67(VPL)
    GAST D 1.01 1.12 1.34(LPL)
    下载: 导出CSV

    表  6  拟合方法下包络精度平均提高量

    Table  6.   Average increase of bounding accuracy with fitting bounding method

    星座 进近类型 包络精度平均提高量/%
    单点 单次进近 终端区
    区域BDS GAST C 36.51 47.92 52.14(VPL)
    GAST D 34.40 42.90 47.32(LPL)
    全球BDS GAST C 32.30 46.92 51.40(VPL)
    GAST D 40.60 43.50 46.52(LPL)
    标准GPS GAST C 38.22 43.12 48.28(VPL)
    GAST D 41.30 47.80 42.52(LPL)
    当前GPS GAST C 47.62 53.94 55.34(VPL)
    GAST D 46.80 53.70 60.20(LPL)
    下载: 导出CSV
  • [1] 李康, 巩冠峰.GPS地基增强系统简介及其性能仿真验证[J].电光与控制, 2013, 20(8):89-94. http://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201308022.htm

    LI K, GONG G F.Introduction of GPS ground based augmentation system and performance simulation[J].Electronics Optics & Control, 2013, 20(8):89-94(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201308022.htm
    [2] SUPARTA W.Tropospheric modeling from GPS[M]//SUPARTA W, ALHASA K M.Modeling of tropospheric delays using ANFIS.Berlin:Springer International Publishing, 2016:19-52.
    [3] DIGGLE D W.An investigation into the use of satellite-based positioning systems for flight reference/autoland operations, dissertation[D].Columbus:Ohio University, 1994:2-17. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1173978322
    [4] VAN GRAAS F, KRISHNAN V, SUDDAPALLI R, et al.Conspiring biases in the LAAS[C]//Proceedings of the Annual Meeting-Institute of Navigation.Manassas, VA:ION, 2004:300-307.
    [5] HUANG J, VAN GRAAS F.Comparison of tropospheric decorrelation errors in the presence of sever weather conditions in different areas and over different baseline lengths[J].Navigation, 2007, 54(3):207-226. doi: 10.1002/navi.2007.54.issue-3
    [6] HUANG J, VAN GRAAS F, COHENOUR C.Characterization of tropospheric spatial decorrelation errors over a 5-km baseline[J].Navigation, 2008, 55(1):39-53. doi: 10.1002/navi.2008.55.issue-1
    [7] VAN GRAAS F, ZHU Z.Tropospheric delay threats for the GBAS[C]//Proceedings of the International Technical Meeting of the Institute of Navigation.Manassas, VA:ION, 2011:959-964.
    [8] MATEUS P, NICO G, TOME R, et al.Experimental study on the atmospheric delay based on GPS, SAR interferometry, and numerical weather model data[J].IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(1):6-11. http://ieeexplore.ieee.org/document/6247501/
    [9] GUILBERT A.Non-nominal troposphere reassessment for meeting CAT Ⅱ/Ⅲ with MC/MF GBAS[C]//Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation.Manassas, VA:ION, 2015:1526-1537.
    [10] RTCA Inc.Minimum operational performance standards for GPS local area augmentation system airborne equipment:RTCA D0-253C-08[S].Washington, D.C.:RTCA, 2008:52. http://citeseer.uark.edu:8080/citeseerx/showciting;jsessionid=80FB1274FB7F1942290A0E9B45B1FB62?cid=8670408
    [11] NILSSON T, BÖHM J, WIJAYA D D, et al.Atmospheric effects in space geodesy[M].Berlin:Springer, 2013:73-136.
    [12] SKIDMORE T, VAN GRASS F.An investigation of troposphere errors on differential GNSS accuracy and integrity[C]//Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation.Manassas, VA:ION, 2004:2752-2760.
    [13] RIFE J, PULLEN S.The impact of measurement biases on availability for CAT Ⅲ LAAS[J].Navigation, 2006, 52(4):215-228. doi: 10.1002/j.2161-4296.2005.tb00364.x/abstract
    [14] SEO J, LEE J, PULLEN S, et al.Targeted parameter inflation within GBAS to minimize anomalous ionospheric impact[J].Journal of Aircraft, 2012, 49(2):587-588. doi: 10.2514/1.C031601
    [15] 李亮, 赵琳, 丁继成, 等.提高LAAS空间信号可用性的完好性监测新膨胀算法[J].航空学报, 2011, 32(4):664-671. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201104011.htm

    LI L, ZHAO L, DING J C, et al. A new inflation integrity monitoring algorithm for improving availability of LAAS signal-in-space[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(4):664-671(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201104011.htm
    [16] LEE J, PULLEN S, XIE G, et al.LAAS sigma-mean monitor analysis and failure-test verification[C]//Proceedings of Annual Meeting of the Institute of Navigation.Manassas, VA:ION, 2010:694-704.
    [17] ICAO NSP.GBAS CAT Ⅱ/Ⅲ development baseline SARP:Annex 10, Volume Ⅰ[R].Montreal:International Civil Aviation Organization, 2010.
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  490
  • HTML全文浏览量:  5
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-17
  • 录用日期:  2016-11-11
  • 刊出日期:  2017-09-20

目录

    /

    返回文章
    返回
    常见问答