留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速柔性转子系统非线性振动响应特征分析

洪杰 于欢 肖森 马艳红

洪杰, 于欢, 肖森, 等 . 高速柔性转子系统非线性振动响应特征分析[J]. 北京航空航天大学学报, 2018, 44(4): 653-661. doi: 10.13700/j.bh.1001-5965.2017.0266
引用本文: 洪杰, 于欢, 肖森, 等 . 高速柔性转子系统非线性振动响应特征分析[J]. 北京航空航天大学学报, 2018, 44(4): 653-661. doi: 10.13700/j.bh.1001-5965.2017.0266
HONG Jie, YU Huan, XIAO Sen, et al. Nonlinear vibration response characteristics of high-speed flexible rotor system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 653-661. doi: 10.13700/j.bh.1001-5965.2017.0266(in Chinese)
Citation: HONG Jie, YU Huan, XIAO Sen, et al. Nonlinear vibration response characteristics of high-speed flexible rotor system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 653-661. doi: 10.13700/j.bh.1001-5965.2017.0266(in Chinese)

高速柔性转子系统非线性振动响应特征分析

doi: 10.13700/j.bh.1001-5965.2017.0266
基金项目: 

国家自然科学基金 51575022

详细信息
    作者简介:

    洪杰  男, 博士, 教授, 博士生导师。主要研究方向:航空发动机转子动力学、航空发动机整机动力学、旋转机械振动控制、智能结构与新型阻尼材料等

    马艳红  女, 博士, 教授, 博士生导师。主要研究方向:航空发动机整机动力学、旋转机械振动控制、智能结构与新型阻尼材料等

    通讯作者:

    马艳红, E-mail: mayanh2002@163.com

  • 中图分类号: V231.96

Nonlinear vibration response characteristics of high-speed flexible rotor system

Funds: 

National Natural Science Foundation of China 51575022

More Information
  • 摘要:

    针对高速柔性转子多支点支承的结构特点及转子动力特性设计的需要,分析松动支承对转子动力特性的影响,仿真研究得到多支点支承高速柔性转子系统的非线性振动响应特征。研究结果表明:工作在多阶临界转速以上的转子系统,存在松动支承时,工作中的柔性转子可能存在周期、拟周期、混沌运动。进而研究了松动支承位置、不平衡量、松动间隙等参数对多支点支承柔性转子振动响应的影响,分析结果为多支点支承高速柔性转子系统的动力学设计提供了理论方法。

     

  • 图 1  采用松动支承设计的多支点支承柔性转子模型

    Figure 1.  Multi-supported flexible rotor model with bearing looseness design

    图 2  加大油膜间隙的挤压油膜阻尼器转子模型

    Figure 2.  Model of SFD rotor system with increased oil film clearance

    图 3  多支点支承高速柔性转子系统力学模型

    Figure 3.  Mechanical model of multi-supported high-speed flexible rotor system

    图 4  振幅随转速变化的分岔图

    Figure 4.  Bifurcation diagram of vibration amplitude changing with rotational speed

    图 5  随转速变化的频域瀑布图

    Figure 5.  Waterfall curve of frequency domain changing with rotational speed

    图 6  2号支点位置转子的振动响应

    Figure 6.  Vibration response of rotor at position of Support 2

    图 7  轮盘1位置转子的振动响应

    Figure 7.  Vibration response of rotor at position of Disk1

    图 8  2号、4号支点采用松动支承设计的多支点支承柔性转子系统

    Figure 8.  Multi-supported flexible rotor system with bearing clearance designed at Support 2 and Support 4

    图 9  松动支承位置不同时2号支点振幅随转速变化的分岔图

    Figure 9.  Bifurcation diagram of vibration amplitude of Support 2 changing with rotational speed when location of bearing looseness is different

    图 10  松动支承位置不同时轮盘2振幅随转速变化的分岔图

    Figure 10.  Bifurcation diagram of vibration amplitude of Disk 2 changing with rotational speed when location of bearing looseness is different

    图 11  松动支承位置不同时3号支点振幅随转速变化的分岔图

    Figure 11.  Bifurcation diagram of vibration amplitude of Support 3 changing with rotational speed when location of bearing looseness is different

    图 12  不平衡量不同时2号支点振幅随转速变化的分岔图

    Figure 12.  Bifurcation diagram of vibration amplitude of Support 2 changing with rotational speed when unbalance value is different

    图 13  支承刚度不同时2号支点振幅随转速变化的分岔图

    Figure 13.  Bifurcation diagram of vibration amplitude of Support 2 changing with rotational speed when bearing stiffness is different

    图 14  松动间隙不同时2号支点振幅随转速变化的分岔图

    Figure 14.  Bifurcation diagram of vibration amplitude of Support 2 changing with rotational speed when bearing clearance is different

    表  1  结构参数取值

    Table  1.   Values of structural parameters

    参数 数值
    m1e1/(g·mm) 10
    m2e2/(g·mm) 10
    c2/mm 7×10-4
    c4/mm 4×10-4
    c2c2/mm 2×10-4
    c4c4/mm 2×10-4
    k1/(N·m-1) 2×105
    k2/(N·m-1) 1×104
    下载: 导出CSV

    表  2  挤压油膜阻尼器参数取值

    Table  2.   Values of SFD parameters

    参数 滑油黏度/(Pa·s) 轴向承载长度/mm 轴承半径/mm
    数值 1×10-3 90 40
    下载: 导出CSV

    表  3  轮盘不平衡量取值

    Table  3.   Unbalance value of disk

    不平衡量 m1e1/(g·mm) m2e2/(g·mm)
    小不平衡量 10 10
    大不平衡量 50 50
    下载: 导出CSV

    表  4  支承刚度变化区间

    Table  4.   Variation range of bearing stiffness

    支承刚度变化范围 Ks2/(N·m-1) Ks3/(N·m-1)
    支承刚度变化范围小 0~1×105 0~1×105
    支承刚度变化范围大 0~1×107 0~1×107
    下载: 导出CSV

    表  5  松动间隙参数取值

    Table  5.   Parameter values of bearing clearance

    松动间隙 c2/mm c4/mm c2/mm c4/mm
    小松动间隙 1.4×10-3 8×10-4 2×10-4 2×10-4
    大松动间隙 7×10-3 4×10-3 2×10-3 2×10-3
    下载: 导出CSV
  • [1] 于欢, 马艳红, 肖森, 等.高速柔性转子支承松动力学特征及动力特性[J].北京航空航天大学学报, 2017, 43(8):1677-1683. http://bhxb.buaa.edu.cn/CN/abstract/abstract14178.shtml

    YU H, MA Y H, XIAO S, et al.Mechanical and dynamic cha-racteristics of bearing with looseness on high-speed flexible rotor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8):1677-1683(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract14178.shtml
    [2] WANG R, GUO X, WANG Y.Nonlinear analysis of rotor system supported by oil lubricated bearings subjected to base movements[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2016, 230(4):167-172.
    [3] HUSSIEN M, AL-WEDYAN H, TAHAT M S, et al.The behaviour of the Jeffcott rotor under a vibrating base of fluid film bearing[J]. Suranree Journal of Science and Technology, 2008, 15(3):167-176. https://www.researchgate.net/profile/Hussien_Al-Wedyan/publication/228570774_The_behaviour_of_the_Jeffcott_rotor_under_a_vibrating_base_of_fluid_film_bearing/links/55d5ae0308ae9d659487a2b0.pdf?origin=publication_detail
    [4] GOLDMAN P, MUSZYNSKA A.Chaotic behavior of rotor-stator systems with rubs[J]. Journal of Engineering for Gas Turbines and Power, 1994, 116(3):692-701. doi: 10.1115/1.2906875
    [5] GOLDMAN P, MUSZYNKA A.Dynamic effects in mechanical structures with gap and impacting:Order and chaos[J]. Journal of Vibration and Acoustics, 1994, 116(4):541-547. doi: 10.1115/1.2930461
    [6] GOLDMAN P, MUSZYNKA A.Chaotic response of unbalanced rotor/bearing/stator systems with looseness or rubs[J]. Chaos, Solitons & Fractals, 1995, 5(9):1682-1704. https://www.sciencedirect.com/science/article/pii/096007799400171L
    [7] KARPENKO E V, WIERCIGROCH M, PAVLOVSKAIA E E, et al.Piecewise approximate analytical solutions for a Jeffcott rotor with a snubber ring[J]. International Journal of Mechanical Sciences, 2002, 44(3):475-488. doi: 10.1016/S0020-7403(01)00108-4
    [8] KARPENKO E V, WIERCIGROCH M, CARTMELL M P.Re-gular and chaotic dynamics of a discontinuously nonlinear rotor system[J]. Chaos, Solitons & Fractals, 2002, 13(6):1231-1242.
    [9] KIM Y B, NOAH S T.Quasi-periodic response and stability analysis for a non-linear Jeffcott rotor[J]. Journal of Sound and Vibration, 1996, 190(2):239-253. doi: 10.1006/jsvi.1996.0059
    [10] EHRICH F F.High order subharmonic response of high speed rotors in bearing clearance[J]. Journal of Vibration and Acoustics, 1988, 110(1):9-16. doi: 10.1115/1.3269488
    [11] EHRICH F F. Subharmonic virbration of rotors in bearing clea-rance: ASME Paper No. 66-MD-1[R]. Ner York: ASME, 1966.
    [12] KIM Y B, NOAH S T.Bifurcation analysis for a modified Jeffcott rotor with bearing clearances[J]. Nonlinear Dynamics, 1990, 1(3):221-241. doi: 10.1007/BF01858295
    [13] CHÁVEZ J P, WIERCIGROCH M.Bifurcation analysis of periodic orbits of a non-smooth Jeffcott rotor model[J]. Communications in Nonlinear Science & Numerical Simulation, 2013, 18(9):2571-2580. https://www.sciencedirect.com/science/article/pii/S100757041200559X
    [14] WIERCIGROCH M, DE KRAKER B.Applied nonlinear dynamics and chaos of mechanical systems with discontinuities[M]. Singapore:World Scientific, 2000:177-200.
    [15] INAYAT-HUSSAIN J I, KANKI H, MUREITHI N W.On the bifurcations of a rigid rotor response in squeeze-film dampers[J]. Journal of Fluids & Structures, 2003, 17(3):433-459.
    [16] INAYAT-HUSSAIN J I, KANKI H, MUREITHI N W.Stability and bifurcation of a rigid rotor in cavitated squeeze-film dam-pers without centering springs[J]. Tribology International, 2001, 34(10):689-702. doi: 10.1016/S0301-679X(01)00062-7
    [17] 刘秉正, 彭建华.非线性动力学[M].北京:高等教育出版社, 2004:132-135.

    LIU B Z, PNEG J H.Nonlinear dynamics[M]. Beijing:Higher Education Press, 2004:132-135(in Chinese).
    [18] 赖志慧. 基于Duffing振子混沌和随机共振特性的微弱信号检测方法研究[D]. 天津: 天津大学, 2014.

    LAI Z H. Weak-signal detection based on the chaotic and stochastic-resonance characteristics of Duffing oscillator[D]. Tianjin: Tianjin University, 2014(in Chinese).
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  3
  • PDF下载量:  538
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-28
  • 录用日期:  2017-08-02
  • 刊出日期:  2018-04-20

目录

    /

    返回文章
    返回
    常见问答