留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沿多孔壁面流动的液膜线性稳定性分析

赵越 杨立军

赵越, 杨立军. 沿多孔壁面流动的液膜线性稳定性分析[J]. 北京航空航天大学学报, 2018, 44(6): 1258-1264. doi: 10.13700/j.bh.1001-5965.2017.0475
引用本文: 赵越, 杨立军. 沿多孔壁面流动的液膜线性稳定性分析[J]. 北京航空航天大学学报, 2018, 44(6): 1258-1264. doi: 10.13700/j.bh.1001-5965.2017.0475
ZHAO Yue, YANG Lijun. Linear stability analysis of liquid films flowing down a porous wall[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1258-1264. doi: 10.13700/j.bh.1001-5965.2017.0475(in Chinese)
Citation: ZHAO Yue, YANG Lijun. Linear stability analysis of liquid films flowing down a porous wall[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1258-1264. doi: 10.13700/j.bh.1001-5965.2017.0475(in Chinese)

沿多孔壁面流动的液膜线性稳定性分析

doi: 10.13700/j.bh.1001-5965.2017.0475
基金项目: 

国家杰出青年科学基金 11525207

详细信息
    作者简介:

    赵越  女, 硕士研究生。主要研究方向:沿壁面流动的液膜稳定性分析

    杨立军  男, 博士, 教授, 博士生导师。主要研究方向:非牛顿流体流动不稳定性、液体射流不稳定性及破裂机理、喷嘴动力学、燃烧不稳定性机理

    通讯作者:

    杨立军, E-mail:yanglijun@buaa.edu.cn

  • 中图分类号: V434+.1

Linear stability analysis of liquid films flowing down a porous wall

Funds: 

National Science Fund for Distinguished Young Scholars 11525207

More Information
  • 摘要:

    针对沿多孔壁面流动的牛顿流体液膜进行线性稳定性分析,特别考虑中等雷诺数的情形。认为多孔壁面处的流动满足Beavers-Joseph滑移边界条件,采用动量积分方法,得到色散关系和中性稳定曲线。多孔壁面的渗透性促进了液膜流动的不稳定,加快了液膜表面波的移动。随着雷诺数增大,中等雷诺数范围的最大增长率呈现先增大后减小趋势。最大增长率极值和不稳定波数区域与壁面渗透性有关。通过能量分析探究多孔介质渗透性对流动稳定性的作用机理,多孔壁面滑移速度的存在使得平均流速增大,速度梯度减小,导致黏性耗散减小从而促进流动失稳。

     

  • 图 1  液膜沿多孔壁面流动示意图

    Figure 1.  Schematic diagram of liquid films flowing down a porous wall

    图 2  小雷诺数的色散曲线(θ=45°, β=0.1)

    Figure 2.  Dispersion curves with small Reynolds number(θ=45°, β=0.1)

    图 3  中等雷诺数的色散曲线(θ=45°, β=0.1)

    Figure 3.  Dispersion curves with moderate Reynolds number(θ=45°, β=0.1)

    图 4  最大增长率随雷诺数变化(θ=45°)

    Figure 4.  Change of maximum growth rate with Reynolds number(θ=45°)

    图 5  中性稳定曲线(θ=45°)

    Figure 5.  Neutral stability curves(θ=45°)

    图 6  波速随波数变化(θ=45°, Re=10)

    Figure 6.  Change of wave speed with wave number(θ=45°, Re=10)

    图 7  能量分析图(θ=45°, Re=5, β=0.1)

    Figure 7.  Energy analysis chart(θ=45°, Re=5, β=0.1)

    图 8  不同β值时动能变化率及各力做功功率随波数的变化(θ=45°, Re=5)

    Figure 8.  Rates of change of kinetic energy and change of power of various forces with wave number under different β values(θ=45°, Re=5)

  • [1] 周红玲, 杨成虎, 刘犇.液体火箭发动机液膜冷却研究综述[J].载人航天, 2012, 18(4):8-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrht201204005

    ZHOU H L, YANG C H, LIU B.Review of research on liquid film cooling for liquid-propellant rocket engine[J].Manned Spaceflight, 2012, 18(4):8-13(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrht201204005
    [2] BENJAMIN T B.Wave formation in laminar flow down an inclined plane[J].Journal of Fluid Mechanics, 1957, 2(6):554-574. doi: 10.1017/S0022112057000373
    [3] YIH C S.Stability of liquid flow down an inclined plane[J].Physics of Fluids, 1963, 6(3):321-334. doi: 10.1063/1.1706737
    [4] BEAVERS G S, JOSEPH D D.Boundary conditions at a naturally permeable wall[J].Journal of Fluid Mechanics, 1967, 30(1):197-207. doi: 10.1017/S0022112067001375
    [5] PASCAL J P.Linear stability of fluid flow down a porous inclined plane[J].Journal of Physics D:Applied Physics, 1999, 32(4):417-422. doi: 10.1088/0022-3727/32/4/011
    [6] PASCAL J P.Instability of power-law fluid flow down a porous incline[J].Journal of Non-Newtonian Fluid Mechanics, 2006, 133(2):109-120. http://www.sciencedirect.com/science/article/pii/S0377025705002673
    [7] SADIQ I M R, USHA R.Thin Newtonian film flow down a porous inclined plane:Stability analysis[J].Physics of Fluids, 2008, 20(2):022105. doi: 10.1063/1.2841363
    [8] SADIQ I M R, USHA R.Effect of permeability on the instability of a non-Newtonian film down a porous inclined plane[J].Journal of Non-Newtonian Fluid Mechanics, 2010, 165(19):1171-1188. http://www.sciencedirect.com/science/article/pii/S037702571000159X
    [9] LIU R, LIU Q S.Instabilities of a liquid film flowing down an inclined porous plane[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2009, 80(3 Pt 2):036316.
    [10] LIU R, LIU Q S.Instabilities and transient behaviors of a liquid film flowing down a porous inclined plane[J].Physics of Fluids, 2010, 22(7):074101. doi: 10.1063/1.3455503
    [11] OGDEN K A, D'ALESSIO S J D, PASCAL J P.Gravity-driven flow over heated, porous, wavy surfaces[J].Physics of Fluids, 2011, 23(12):122102. doi: 10.1063/1.3667267
    [12] PRAVEEN KUMAR A A, USHA R, BANERJEE T, et al.Instabilities of a free bilayer flowing on an inclined porous medium[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2013, 88(6):063012. http://europepmc.org/abstract/med/24483562
    [13] DEEPU P, SRINIVAS K, PRATEEK A, et al.Stability of a liquid film flowing down an inclined anisotropic and inhomogeneous porous layer:An analytical description[J].Journal of Fluid Mechanics, 2016, 807:135-154. doi: 10.1017/jfm.2016.613
    [14] BARLETTA A, CELLI M.Instability of combined forced and free flow in an inclined porous channel[J].International Journal of Computational Methods, 2016, 13(2):1640001. doi: 10.1142/S0219876216400016
    [15] KALLIADASIS S, RUYER-QUIL C, SCHEID B, et al.Falling liquid films[M].Berlin:Springer, 2012:57-60.
  • 加载中
图(8)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  2
  • PDF下载量:  402
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-11
  • 录用日期:  2017-08-02
  • 刊出日期:  2018-06-20

目录

    /

    返回文章
    返回
    常见问答