留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平井多裂纹同步扩展的偏折分析

陈旻炜 李敏 陈伟民

陈旻炜, 李敏, 陈伟民等 . 水平井多裂纹同步扩展的偏折分析[J]. 北京航空航天大学学报, 2019, 45(1): 99-108. doi: 10.13700/j.bh.1001-5965.2018.0255
引用本文: 陈旻炜, 李敏, 陈伟民等 . 水平井多裂纹同步扩展的偏折分析[J]. 北京航空航天大学学报, 2019, 45(1): 99-108. doi: 10.13700/j.bh.1001-5965.2018.0255
CHEN Minwei, LI Min, CHEN Weiminet al. Deflection of multi-crack synchronous propagation in horizontal well[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 99-108. doi: 10.13700/j.bh.1001-5965.2018.0255(in Chinese)
Citation: CHEN Minwei, LI Min, CHEN Weiminet al. Deflection of multi-crack synchronous propagation in horizontal well[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 99-108. doi: 10.13700/j.bh.1001-5965.2018.0255(in Chinese)

水平井多裂纹同步扩展的偏折分析

doi: 10.13700/j.bh.1001-5965.2018.0255
基金项目: 

国家自然科学基金 11232012

国家自然科学基金 11372320

详细信息
    作者简介:

    陈旻炜  男, 博士研究生。主要研究方向:断裂力学、水力压裂、裂纹扩展

    李敏  男, 博士, 教授, 博士生导师。主要研究方向:压电驱动器气动弹性应用、结构非线性气动弹性分析与控制、固体力学计算分析

    陈伟民  女, 博士, 研究员, 博士生导师。主要研究方向:流固耦合、结构动力学

    通讯作者:

    陈伟民, E-mail: wmchen@imech.ac.cn

  • 中图分类号: O346.1

Deflection of multi-crack synchronous propagation in horizontal well

Funds: 

National Natural Science Foundation of China 11232012

National Natural Science Foundation of China 11372320

More Information
  • 摘要:

    水平井压裂技术是近几年油气工业发展起来的新技术,用于提高油气井的产量。然而在裂纹扩展的过程中,裂尖决定了裂纹的起裂与扩展方向,这会直接影响储层的压裂效果,所以人们对于这项技术还需要更进一步的认识。根据裂尖的应力场特性建立了裂尖权函数,能较准确地描述裂尖的应力状态,判断裂纹的扩展方向。在利用网格重剖分方法并结合最大主应力准则对水平井多裂纹扩展进行分析的基础上,通过裂尖权函数方法分析了水压裂纹在应力差、裂纹数目和裂纹间距等条件下产生偏折的原因。最终结果表明,裂纹在开裂时裂尖处xy方向的等效应力变化不明显,裂纹的偏折主要与裂尖xy方向的等效应力有关。

     

  • 图 1  裂尖附近单元及高斯点分布图

    Figure 1.  Distribution diagram of element and Gauss point near crack tip

    图 2  Ⅰ型裂尖附近的应力误差云图

    Figure 2.  Error contour of stresses near model-Ⅰ crack tip

    图 3  Ⅱ型裂尖附近的应力误差云图

    Figure 3.  Error contour of stresses near model-Ⅱ crack tip

    图 4  角度与距离函数曲线

    Figure 4.  Curves of angle and distance function

    图 5  裂纹路径误差示意图

    Figure 5.  Schematic of crack path error

    图 6  带孔板边缘多裂纹扩展的模型示意图

    Figure 6.  Schematic of model of multiple edge cracks propagation of hole plate

    图 7  不同方法的开裂路径对比(算例1)

    Figure 7.  Comparison of crack path among different methods (Example 1)

    图 8  四点弯曲梁试件模型

    Figure 8.  Model of 4-point bending beam specimen

    图 9  不同方法的开裂路径对比(算例2)

    Figure 9.  Comparison of crack path among different methods (Example 2)

    图 10  有限元模型示意图

    Figure 10.  Schematic of finite element model

    图 11  有限元网格模型

    Figure 11.  Mesh of finite element model

    图 12  不同间长比条件下裂纹扩展路径

    Figure 12.  Crack propagation path under different RSL

    图 13  不同间长比条件下裂尖等效应力随裂纹数目的变化情况

    Figure 13.  Variation of equivalent stress at crack tip with crack number under different RSL

    图 14  不同裂纹数目条件下裂尖等效应力随间长比的变化情况

    Figure 14.  Variation of equivalent stress at crack tip with RSL under different crack numbers

    图 15  不同裂纹数目条件下裂纹偏折角度与水压随间长比的变化情况

    Figure 15.  Variation of deflection angle and hydraulic pressure with RSL under different crack numbers

    图 16  不同应力差条件下的裂纹扩展路径

    Figure 16.  Crack propagation path under different stress contrast

    图 17  不同裂纹数目条件下裂尖等效应力随应力差的变化情况

    Figure 17.  Variation of equivalent stress at crack tip with stress contrast under different crack numbers

    图 18  不同裂纹数目条件下裂尖偏折角度与水压随应力差的变化情况

    Figure 18.  Variation of deflection angle and hydraulic pressure at crack tip with stress contrast under different crack numbers

    不同系数n下带孔板边缘的裂纹扩展对比

    Comparison of edge crack propagation of hole plate under different coefficient n

    不同系数n下四点弯曲梁试件模型的裂纹扩展对比

    Crack propagation comparison of 4-point bending beam specimen under different coefficient n

  • [1] BAŽANT Z P, SALVIATO M, CHAU V T, et al.Why fracking works[J].Journal of Applied Mechanics, 2014, 81(10):101010. doi: 10.1115/1.4028192
    [2] WANG X L, LIU C, WANG H, et al.Comparison of consecutive and alternate hydraulic fracturing in horizontal wells using XFEM-based cohesive zone method[J].Journal of Petroleum Science & Engineering, 2016, 143:14-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=001c32e3c72278410952344616dc8269
    [3] ZENG X, WEI Y.Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking[J].Journal of the Mechanics and Physics of Solids, 2017, 101:235-249. doi: 10.1016/j.jmps.2016.12.012
    [4] GALE J F W, LAUBACH S E, OLSON J E, et al.Natural fractures in shale:A review and new observations[J].AAPG Bulletin, 2014, 98(11):2165-2216. doi: 10.1306/08121413151
    [5] GALE J F W, REED R M, HOLDER J.Natural fractures in the Barnett shale and their importance for hydraulic fracture treatments[J].AAPG Bulletin, 2007, 91(4):603-622. doi: 10.1306/11010606061
    [6] LEE H P, OLSON J E, HOLDER J, et al.The interaction of propagating opening mode fractures with preexisting discontinuities in shale[J].Journal of Geophysical Research Solid Earth, 2015, 120(1):169-181. doi: 10.1002/2014JB011358
    [7] 曾青冬, 姚军.水平井多裂缝同步扩展数值模拟[J].石油学报, 2015, 36(12):1571-1579. doi: 10.7623/syxb201512012

    ZENG Q D, YAO J.Numerical simulation of multiple fractures simultaneous propagation in horizontal well[J].Acta Petrolei Sinica, 2015, 36(12):1571-1579(in Chinese). doi: 10.7623/syxb201512012
    [8] 郭印同, 杨春和, 贾长贵, 等.页岩水力压裂物理模拟与裂缝表征方法研究[J].岩石力学与工程学报, 2014, 33(1):52-59. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201401006

    GUO Y T, YANG C H, JIA C G, et al.Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J].Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1):52-59(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201401006
    [9] 衡帅, 杨春和, 郭印同, 等.层理对页岩水力裂缝扩展的影响研究[J].岩石力学与工程学报, 2015, 34(2):228-237. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201502002

    HENG S, YANG C H, GUO Y T, et al.Influence of bedding planes on hydraulic fracture propagation in shale formations[J].Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2):228-237(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201502002
    [10] 陈勉.页岩气储层水力裂缝转向扩展机制[J].中国石油大学学报(自然科学版), 2013, 37(5):88-94. doi: 10.3969/j.issn.1673-5005.2013.05.013

    CHEN M.Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J].Journal of China University of Petroleum(Edition of Natural Sciences), 2013, 37(5):88-94(in Chinese). doi: 10.3969/j.issn.1673-5005.2013.05.013
    [11] CHUPRAKOV D A, ZHUBAYEV A S.A variational approach to analyze a natural fault with hydraulic fracture based on the strain energy density criterion[J].Theoretical & Applied Fracture Mechanics, 2010, 53(3):221-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=659a383e1d0881f6b91308148f28eb9d
    [12] HUANG J, GRIFFITHS D V, WONG S W.Initiation pressure, location and orientation of hydraulic fracture[J].International Journal of Rock Mechanics & Mining Sciences, 2012, 49(1):59-67. https://www.sciencedirect.com/science/article/pii/S1365160911002000
    [13] DOLBOW J, BELYTSCHKO T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering, 1999, 46(1):131-150. doi: 10.1002/(ISSN)1097-0207
    [14] 范天佑.断裂理论基础[M].北京:科学出版社, 2003:74-75.

    FAN T Y.Foundation of fracture theory[M].Beijing:Science Press, 2003:74-75(in Chinese).
    [15] VENTURA G, GRACIE R, BELYTSCHKO T.Fast integration and weight function blending in the extended finite element method[J].International Journal for Numerical Methods in Engineering, 2010, 77(1):1-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dad7c0a3f499049ecd0aac1bf1d66612
    [16] CASTONGUAY S T, MEAR M E, DEAN R H, et al.Predictions of the growth of multiple interacting hydraulic fractures in three dimensions[C]//SPE Annual Technical Conference and Exhibition.Richardson: Society of Petroleum Engineers, 2013: 1-12. https://www.onepetro.org/conference-paper/SPE-166259-MS
    [17] 师访.岩石破裂过程的扩展有限元法研究[D].北京: 中国矿业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10290-1015972349.htm

    SHI F.Study on the cracking process of rock using the extended finite element method[D].Beijing: China University of Mining and Technology, 2015(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10290-1015972349.htm
    [18] 李根生, 刘丽, 黄中伟, 等.水力射孔对地层破裂压力的影响研究[J].中国石油大学学报(自然科学版), 2006, 30(5):42-45. doi: 10.3321/j.issn:1000-5870.2006.05.010

    LI G S, LIU L, HUANG Z W, et al.Study of effect of hydraulic perforating on formation fracturing pressure[J].Journal of China University of Petroleum(Edition of Natural Sciences), 2006, 30(5):42-45(in Chinese). doi: 10.3321/j.issn:1000-5870.2006.05.010
    [19] 彪仿俊, 刘合, 张劲, 等.螺旋射孔条件下地层破裂压力的数值模拟研究[J].中国科学技术大学学报, 2011, 41(3):219-226. http://d.old.wanfangdata.com.cn/Periodical/zgkxjsdxxb201103006

    BIAO F J, LIU H, ZHANG J, et al.A numerical study of fracture initiation pressure under helical perforation conditions[J].Jouranl of University of Science and Technology of China, 2011, 41(3):219-226(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgkxjsdxxb201103006
    [20] BRINER A, CHAVEZ J C, NADEZHDIN S, et al.Impact of perforation tunnel orientation and length in horizontal wellbores on fracture initiation pressure in maximum tensile stress criterion model for tight gas fields in the sultanate of oman[C]//SPE Middle East Oil & Gas Show and Conference.Richardson: Society of Petroleum Engineers, 2015: 63-75. https://www.onepetro.org/conference-paper/SPE-172663-MS
    [21] 彪仿俊, 刘合, 张士诚, 等.水力压裂水平裂缝影响参数的数值模拟研究[J].工程力学, 2011, 28(10):228-235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201102856653

    BIAO F J, LIU H, ZHANG S C, et al.A numerical study of parameter influences on horizontal hydraulic fracture[J].Engineering Mechanics, 2011, 28(10):228-235(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201102856653
  • 加载中
图(20)
计量
  • 文章访问数:  398
  • HTML全文浏览量:  4
  • PDF下载量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-04
  • 录用日期:  2018-07-27
  • 刊出日期:  2019-01-20

目录

    /

    返回文章
    返回
    常见问答