留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FEM研究含孔隙介质中裂纹矩张量反演精度

孔岳 李敏 陈伟民

孔岳, 李敏, 陈伟民等 . 基于FEM研究含孔隙介质中裂纹矩张量反演精度[J]. 北京航空航天大学学报, 2019, 45(6): 1114-1121. doi: 10.13700/j.bh.1001-5965.2018.0560
引用本文: 孔岳, 李敏, 陈伟民等 . 基于FEM研究含孔隙介质中裂纹矩张量反演精度[J]. 北京航空航天大学学报, 2019, 45(6): 1114-1121. doi: 10.13700/j.bh.1001-5965.2018.0560
KONG Yue, LI Min, CHEN Weiminet al. Precision of crack moment-tensor inversion in porous media using finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1114-1121. doi: 10.13700/j.bh.1001-5965.2018.0560(in Chinese)
Citation: KONG Yue, LI Min, CHEN Weiminet al. Precision of crack moment-tensor inversion in porous media using finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1114-1121. doi: 10.13700/j.bh.1001-5965.2018.0560(in Chinese)

基于FEM研究含孔隙介质中裂纹矩张量反演精度

doi: 10.13700/j.bh.1001-5965.2018.0560
基金项目: 

国家自然科学基金 11232012

国家自然科学基金 11372320

详细信息
    作者简介:

    孔岳 男, 博士研究生。主要研究方向:矩张量反演方法的工程应用和弹性波的数值模拟

    李敏 男,博士,教授,博士生导师。主要研究方向:结构动力学

    通讯作者:

    李敏, E-mail: limin@buaa.edu.cn

  • 中图分类号: O347.4+1;P315

Precision of crack moment-tensor inversion in porous media using finite element method

Funds: 

National Natural Science Foundation of China 11232012

National Natural Science Foundation of China 11372320

More Information
  • 摘要:

    基于矩张量理论的动态裂纹扩展监测方法,利用裂纹开裂产生的声发射信号获取裂纹开裂信息,而介质中的孔隙结构会影响监测结果的准确性。使用二维平面应变有限单元方法(FEM)建立孔隙分布数值模型,给出特定裂纹在不同孔隙率介质下的反演结果,并分析其成因。数值结果表明,双力偶成分对孔隙率的敏感度最高。对于纯剪切裂纹,反演结果中双力偶成分的占比随孔隙率的增大而减小;对于面内各向同性和拉伸裂纹,双力偶成分的占比随孔隙率的增大而增大。原因是孔隙结构对弹性波的散射导致弹性波幅值的空间分布发生变化,效果体现在两方面:一方面,能量转移作用导致不同传播方向弹性波的幅值趋于接近;另一方面,孔隙分布的差异导致临近传播方向的弹性波幅值差异增大。两种影响因素的权重差异导致不同裂纹的反演结果受孔隙的影响不同。

     

  • 图 1  孔隙分布模型

    Figure 1.  Pore distribution model

    图 2  各向同性裂纹3种成分占比随孔隙率的变化

    Figure 2.  Change of proportion of three components in isotropic crack with poriness

    图 3  剪切裂纹3种成分占比随孔隙率的变化

    Figure 3.  Change of proportions of three components in shear crack with poriness

    图 4  拉伸裂纹3种成分占比随孔隙率的变化

    Figure 4.  Change of proportions of three components in tensile crack with poriness

    图 5  集中孔隙(裂纹)模型

    Figure 5.  Pore-central-distribution (crack) model

    图 6  弹性波散射示意图

    Figure 6.  Scattering schematic diagram of elastic wave

    图 7  各向同性成分理论辐射模式

    Figure 7.  Theoretical radiation pattern of isotropic component

    图 8  双力偶成分理论辐射模式

    Figure 8.  Theoretical radiation pattern of double- couple component

    图 9  孔隙率为30%时剪切裂纹的弹性波辐射模式

    Figure 9.  Elastic wave radiation pattern of shear crack with poriness of 30%

    图 10  孔隙率为30%时面内各向同性裂纹的弹性波辐射模式

    Figure 10.  Elastic wave radiation pattern of in-plane isotropic crack with poriness of 30%

    图 11  孔隙率为30%时拉伸裂纹的弹性波辐射模式

    Figure 11.  Elastic wave radiation pattern of tensile crack with poriness of 30%

    表  1  材料参数取值

    Table  1.   Values of material parameters

    参数 基体 孔隙
    弹性模量E/Pa 5.4×1010 1
    泊松比ν 0.2 0.01
    密度ρ/(kg·m-3) 2 300 1
    下载: 导出CSV
  • [1] BURRIDGE R, KNOPOFF L.Body force equivalents for seismic dislocations[J].Bulletin of the Seismological Society of America, 1964, 54(6A):1875-1888. http://cn.bing.com/academic/profile?id=2e03a831f2113167e92d027525e99962&encoded=0&v=paper_preview&mkt=zh-cn
    [2] AKI K, RICHARDS P G.Quantitative seismology[M].San Francisco:W.H.Freeman and Co., 1980.
    [3] OHTSU M.Acoustic emission theory for moment tensor analysis[J].Research in Nondestructive Evaluation, 1995, 6(3):169-184. doi: 10.1080/09349849509409555
    [4] KNOPOFF L, RANDALL M J.The compensated linear-vector dipole:A possible mechanism for deep earthquakes[J].Journal of Geophysical Research, 1970, 75(26):4957-4963. doi: 10.1029/JB075i026p04957
    [5] SIPKIN S A.Interpretation of non-double-couple earthquake mechanisms derived from moment tensor inversion[J].Journal of Geophysical Research, 1986, 91(B1):531-547. doi: 10.1029/JB091iB01p00531
    [6] JULIAN B R, MILLER A D, FOULGER G R.Non-double-couple earthquakes 1.Theory[J].Reviews of Geophysics, 1998, 36(4):525-549. doi: 10.1029/98RG00716
    [7] HUDSON J A, PEARCE R G, ROGERS R M.Source type plot for inversion of the moment tensor[J].Journal of Geophysical Research, 1989, 94(B1):765-774. doi: 10.1029/JB094iB01p00765
    [8] VAVRYČUK V.Moment tensor decompositions revisited[J].Journal of Seismology, 2014, 19(1):231-252. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0233970418/
    [9] 吴微微, 杨建思, 苏金蓉, 等.2013年吉林前郭-乾安震源区中强地震矩张量反演与区域孕震环境研究[J].地球物理学报, 2014, 57(8):2541-2554. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201408015.htm

    WU W W, YANG J S, SU J R, et al.Moment inversion of moderate earthquakes and seismogenic environment in Qianguo-Qian'an source region, 2013, Jilin province[J].Chinese Journal of Geophysics, 2014, 57(8):2541-2554(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-DQWX201408015.htm
    [10] 柴金飞, 金爱兵, 高永涛, 等.基于矩张量反演的矿山突水孕育过程[J].工程科学学报, 2015, 37(3):267-274. http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb201503001

    CHAI J F, JIN A B, GAO Y T, et al.Water inrush inoculation process in mines based on moment tensor inversion[J].Chinese Journal of Engineering, 2015, 37(3):267-274(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb201503001
    [11] 康清清, 缪发军, 刘红桂, 等.利用矩张量反演法研究江苏高邮-宝应MS4.9级地震震源机制解和震源深度[J].地球物理学报, 2015, 58(1):204-215. doi: 10.3969/j.issn.1672-7940.2015.01.001

    KANG Q Q, MIAO F J, LIU H G, et al.Focal mechanism and focal depth of the Gaoyou-Baoying, Jiangsu, China MS4.9 earthquake on 20 July 2012 derived from moment tensor inversion[J].Chinese Journal of Geophysics, 2015, 58(1):204-215(in Chinese). doi: 10.3969/j.issn.1672-7940.2015.01.001
    [12] RÖSSLER D, RVMPKER G, KRVGER F.Ambiguous moment tensors and radiation patterns in anisotropic media with applications to the modeling of earthquake mechanisms in W-Bohemia[J].Studia Geophysica et Geodaetica, 2004, 48(1):233-250. doi: 10.1023/B:SGEG.0000015594.11070.21
    [13] VAVRYČUK V.Focal mechanisms in anisotropic media[J].Geophysical Journal International, 2005, 161(2):334-346. doi: 10.1111/gji.2005.161.issue-2
    [14] CHAPMAN C H, LEANEY W S.A new moment-tensor decomposition for seismic events in anisotropic media[J].Geophysical Journal International, 2012, 188(1):343-370. doi: 10.1111/gji.2012.188.issue-1
    [15] BAIG A, URBANCIC T.Microseismic moment tensors:A path to understanding frac growth[J].The Leading Edge, 2010, 29(3):320-324. doi: 10.1190/1.3353729
    [16] BAIG A, URBANCIC T I, PRINCE M.Microseismic moment tensors: A path to understanding growth of hydraulic fractures[C]//Canadian Unconventional Resources and International Petroleum Conference: Society of Petroleum Engineers, 2010: 137771.
    [17] CARCIONE J M, HELLE H B, PHAM N H.White's model for wave propagation in partially saturated rocks:Comparison with poroelastic numerical experiments[J].Geophysics, 2003, 68(4):1389-1398. doi: 10.1190/1.1598132
    [18] WHITE J E.Computed seismic speeds and attenuation in rocks with partial gas saturation[J].Geophysics, 1975, 40(2):224-232. doi: 10.1190/1.1440520
    [19] 刘宁, 李敏, 陈伟民.基于EMT采用FEM研究含裂纹介质中弹性波传播机制[J].北京航空航天大学学报, 2015, 41(9):1686-1692. http://bhxb.buaa.edu.cn/CN/abstract/abstract13430.shtml

    LIU N, LI M, CHEN W M.Wave propagation in cracked elastic media based on EMT using FEM[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9):1686-1692(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13430.shtml
    [20] 谭子翰, 徐松林, 刘永贵, 等.含多种尺寸缺陷岩体中的弹性波散射[J].应用数学和力学, 2013, 34(1):38-48. doi: 10.3879/j.issn.1000-0887.2013.01.005

    TAN Z H, XU S L, LIU Y G, et al.Scattering of elastic waves by multi-size defects in rock mass[J].Applied Mathematics and Mechanics, 2013, 34(1):38-48(in Chinese). doi: 10.3879/j.issn.1000-0887.2013.01.005
    [21] 郑阳, 周进节.兰姆波在裂纹处的模态转换及散射特性研究[J].工程力学, 2014, 31(6):21-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201406003

    ZHENG Y, ZHOU J J.Mode conversion and scattering properties of Lamb waves near localized cracking[J].Engineering Mechanics, 2014, 31(6):21-29(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201406003
    [22] OHTSU M, OHNO K, HAMSTAD M A.Moment tensors of in-plane-waves analyzed by SiGMA-2D[J].Journal of Acoustic Emission, 2005, 23:47-63. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=05d25d4e9be03c472569060d8ef4857c
    [23] 孙成禹, 李振春.地震波动力学基础[M].北京:石油工业出版社, 2011:46.

    SUN C Y, LI Z C.Foundation of seismic wave dynamics[M].Beijing:Petroleum Industry Press, 2011:46(in Chinese).
    [24] OHTSU M.Source inversion of acoustic emission waveform[J].Doboku Gakkai Ronbunshu, 1988, 398:71-79.
    [25] 曹丹平, 周建科, 印兴耀.三角网格有限元法波动模拟的数值频散及稳定性研究[J].地球物理学报, 2015, 58(5):1717-1730. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201505022

    CAO D P, ZHOU J K, YIN X Y.The study for numerical dispersion and stability of wave motion with triangle-based finite element algorithm[J].Chinese Journal of Geophysics, 2015, 58(5):1717-1730(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201505022
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  11
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-26
  • 录用日期:  2018-12-21
  • 刊出日期:  2019-06-20

目录

    /

    返回文章
    返回
    常见问答