留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燕尾榫连接结构微动疲劳全寿命预测方法

徐可宁 李雯 黄勇 余庆陶 马国佳 胡文颖

徐可宁, 李雯, 黄勇, 等 . 燕尾榫连接结构微动疲劳全寿命预测方法[J]. 北京航空航天大学学报, 2020, 46(10): 1890-1898. doi: 10.13700/j.bh.1001-5965.2019.0471
引用本文: 徐可宁, 李雯, 黄勇, 等 . 燕尾榫连接结构微动疲劳全寿命预测方法[J]. 北京航空航天大学学报, 2020, 46(10): 1890-1898. doi: 10.13700/j.bh.1001-5965.2019.0471
XU Kening, LI Wen, HUANG Yong, et al. A fretting fatigue total life prediction method for dovetail attachment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1890-1898. doi: 10.13700/j.bh.1001-5965.2019.0471(in Chinese)
Citation: XU Kening, LI Wen, HUANG Yong, et al. A fretting fatigue total life prediction method for dovetail attachment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1890-1898. doi: 10.13700/j.bh.1001-5965.2019.0471(in Chinese)

燕尾榫连接结构微动疲劳全寿命预测方法

doi: 10.13700/j.bh.1001-5965.2019.0471
基金项目: 

国家自然科学基金 51705490

国家自然科学基金 5187600

装备预研重点实验室基金 614290802081706

详细信息
    作者简介:

    徐可宁  女, 博士, 高级工程师。主要研究方向:航空发动机结构强度振动可靠性

    李雯 女, 博士, 研究员。主要研究方向:机械传动与摩擦学、微动损伤多尺度建模与仿真技术

    通讯作者:

    李雯, E-mail: mosquato@buaa.edu.cn

  • 中图分类号: V231.91

A fretting fatigue total life prediction method for dovetail attachment

Funds: 

National Natural Science Foundation of China 51705490

National Natural Science Foundation of China 5187600

Pre-research Key Laboratory Fund for Equipment 614290802081706

More Information
  • 摘要:

    微动损伤使航空发动机榫连接结构疲劳寿命显著降低。以钛合金Ti-6Al-4V燕尾榫连接结构为例,提出一种适用于复杂结构微动疲劳全寿命预测方法。基于修正的Manson-McKnight方法和多轴疲劳理论,疲劳损伤参数由等效应力参数(ESP)表征,微动疲劳裂纹萌生位置和成核寿命通过有限元分析(FEA)和ESP预测。基于断裂力学理论和最大周向应力准则,提出微动疲劳裂纹扩展数值模拟方法,建立微动疲劳扩展寿命与裂纹长度函数关系,依据裂纹终值长度预测微动疲劳扩展寿命。结果显示:钛合金Ti-6Al-4V燕尾榫连接结构微动疲劳裂纹扩展角预测值与实验值均为18°,裂纹生长方向预测值与实验值相符;微动疲劳全寿命(成核寿命+扩展寿命)预测值在实验值的2倍分散带内;最大拉伸载荷对榫连接结构的微动疲劳全寿命影响显著,在相同应力比下,最大拉伸载荷从18 kN变化到24 kN,钛合金Ti-6Al-4V燕尾榫连接结构微动疲劳全寿命降低1个数量级。

     

  • 图 1  钛合金Ti-6Al-4V等效应力σeq与裂纹成核寿命Ni关系[14]

    Figure 1.  Equivalent stress σeq versus crack nucleation life Ni for titanium alloy Ti-6Al-4V[14]

    图 2  微动疲劳仿真流程

    Figure 2.  Flowchart of fretting fatigue simulation

    图 3  燕尾榫连接结构微动疲劳实验设施[5]

    Figure 3.  Fretting fatigue test rig for dovetail attachment[5]

    图 4  1/2燕尾榫连接结构的有限元分析模型

    Figure 4.  Finite element analysis model for half of dovetail attachment

    图 5  钛合金Ti-6Al-4V应力-应变曲线

    Figure 5.  Stress-strain curve for titanium alloy Ti-6Al-4V

    图 6  燕尾榫连接结构的von Mises应力分布

    Figure 6.  von Mises stress distribution for dovetail attachment

    图 7  燕尾榫连接结构的切向接触应力分布

    Figure 7.  Tangential contact stress at contact interface for dovetail attachment

    图 8  不同单元尺寸下的切向接触应力

    Figure 8.  Tangential contact stress at different element sizes

    图 9  燕尾榫细化的有限元模型

    Figure 9.  Refined mesh for dovetail attachment

    图 10  二维和三维模型的切向接触应力计算结果

    Figure 10.  Calculation results of tangential contact stress for 2D and 3D models

    图 11  等效应力σeq在接触区的云图

    Figure 11.  Contour of equivalent stress σeq at contact region

    图 12  裂纹成核寿命Ni在接触区的云图

    Figure 12.  Contour of crack nucleation life Ni at contact region

    图 13  榫头裂纹扩展路径实验与数值解

    Figure 13.  Experimental and numerical results of crack propagation path for dovetail

    图 14  裂纹扩展角与裂纹长度的对应关系

    Figure 14.  Crack kink angle versus crack length

    图 15  裂纹扩展速率与裂纹长度的对应关系

    Figure 15.  Crack growth rate versus crack length

    图 16  裂纹扩展寿命与裂纹长度的对应关系

    Figure 16.  Crack propagation life versus crack length

    图 17  全寿命预测值与实验值对比

    Figure 17.  Predicted total life compared to experimental life

    表  1  钛合金Ti-6Al-4V的裂纹扩展常数[13]

    Table  1.   Crack growth constants of titanium alloy Ti-6Al-4V[13]

    参数 数值
    Kth 4.207 54
    Kc 65.931 72
    A 0.025 4
    B -18.144
    P 3.710 7
    Q 0.234 9
    d -0.006 6
    m(R>0) 0.72
    m(R<0) 0.275
    下载: 导出CSV

    表  2  不同载荷下的裂纹成核寿命分析结果

    Table  2.   Analysis results of crack nucleation life at different loads

    最大拉伸载荷/kN 裂纹成核寿命
    16 2 028 490
    18 920 752
    19 512 825
    20 374 895
    22 172 616
    24 91 184
    下载: 导出CSV

    表  3  不同载荷下的裂纹扩展寿命分析结果

    Table  3.   Analysis result of crack propagation life at different loads

    最大拉伸载荷/kN 裂纹扩展寿命
    16 107
    18 1 589 605
    19 781 162
    20 625 667
    22 363 834
    24 231 415
    下载: 导出CSV
  • [1] WATERHOUSE R B.Fretting fatigue[M].London:Applied Science Publishers Ltd., 1981.
    [2] NOWELL D, DINI D, HILLS D A.Recent developments in the understanding of fretting fatigue[J].Engineering Fracture Mechanics, 2006, 73(2):207-222. doi: 10.1016/j.engfracmech.2005.01.013
    [3] 俞树荣, 王洁璐, 李淑欣, 等.Ti-6Al-4V燕尾榫结构微动疲劳裂纹萌生及扩展行为研究[J].中国机械工程, 2015, 26(24):3386-3390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201524023

    YU S R, WANG J L, LI S X, et al.Study on the initiation and propagation of fretting fatigue crack on the Ti-6Al-4V alloy dovetail joint[J].China Mechanical Engineering, 2015, 26(24):3386-3390(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201524023
    [4] GOLDEN P J, NICHOLAS T.The effect of angle on dovetail fretting experiments in Ti-6Al-4V[J].Fatigue & Fracture of Engineering Materials & Structures, 2005, 28(12):1169-1175. doi: 10.1111/j.1460-2695.2005.00956.x/full
    [5] GOLDEN P J.Development of a dovetail fretting fatigue fixture for turbine engine materials[J].International Journal of Fatigue, 2009, 31(4):620-628. doi: 10.1016/j.ijfatigue.2008.03.017
    [6] GOLDEN P J, CALCATERRA J R.A fracture mechanics life prediction methodology applied to dovetail fretting[J].Tribology International, 2006, 39(10):1172-1180. doi: 10.1016/j.triboint.2006.02.006
    [7] SHI L, WEI D S, WANG Y R, et al.An investigation of fretting fatigue in a circular arc dovetail assembly[J].International Journal of Fatigue, 2016, 82(2):226-237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b16c2a83c71b24bc8dd1c3c18b113ea8
    [8] MANGARDICH D, ABRARI F, FAWAZ Z.A fracture mechanics based approach for the fretting fatigue of aircraft engine fan dovetail attachments[J].International Journal of Fatigue, 2019, 129(12):105213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc13090365a965250000132b8909b3c7
    [9] WEI D S, WANG Y R.Analysis of fretting fatigue life of dovetail assemblies based on fracture mechanics method[J].Engineering Failure Analysis, 2012, 25:144-155. doi: 10.1016/j.engfailanal.2012.05.005
    [10] WEI D S, SHI L, WANG Y R.Cyclic plastic behavior of dovetail under fretting load[J].Engineering Failure Analysis, 2015, 55:100-114. doi: 10.1016/j.engfailanal.2015.05.009
    [11] 石炜, 温卫东, 崔海涛.榫连接结构微动疲劳寿命研究[J].航空动力学报, 2014, 29(1):104-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201401013

    SHI W, WEN W D, CUI H T.Research on fretting fatigue life of dovetail joints[J].Journal of Aerospace Power, 2014, 29(1):104-110(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201401013
    [12] HU C, WEI D S, WANG Y R, et al Experimental and numerical study of fretting fatigue in dovetail assembly using a total life prediction model[J].Engineering Fracture Mechanics, 2019, 205:301-318. doi: 10.1016/j.engfracmech.2018.08.001
    [13] GALLAGHER J P, VAN STONE R H, DELANEUVILLE R E.Improved high-cycle fatigue (HCF) life prediction: AFRL-ML-WP-TR-2001-4159[R].Dayton: Universal Technology Corporation, 2001.
    [14] GALLAGHER J P, NICHOLAS T, GUNDERSON A, et al.Advanced high cycle fatigue (HCF) life assurance: AFRL-ML-WP-TR-2005-4102[R].Dayton: Universal Technology Corporation, 2004.
    [15] GARCIA D B, GRANDT A F.Application of a total life prediction model for fretting fatigue in Ti-6Al-4V[J].International Journal of Fatigue, 2007, 29(7):1311-1318. doi: 10.1016/j.ijfatigue.2006.10.007
    [16] GOLDEN P J, GRANDT A F.Fracture mechanics based fretting fatigue life predictions in Ti-6Al-4V[J].Engineering Fracture Mechanics, 2004, 71(15):2229-2243. doi: 10.1016/j.engfracmech.2003.10.005
    [17] MURTHY H, RAJEEV P T, FARRIS T N, et al.Fretting fatigue of Ti-6Al-4V subjected to blade/disk contact loading[C]//50th Anniversary of Japan Society of Materials Science, 2001: 41-48.
    [18] 王建明, 刘伟, 吕鹤婷.复合型裂纹的扩展路径模拟及疲劳寿命预测[J].哈尔滨工程大学学报, 2015, 36(8):1086-1091. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb201508013

    WANG J M, LIU W, LV H T.Numerical simulation of crack propagation path and fatigue life prediction for mixed mode cracks[J].Journal of Harbin Engineering University, 2015, 36(8):1086-1091(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb201508013
    [19] 魏大盛, 王延荣.榫连结构的高应力梯度及破坏分析[J].北京航空航天大学学报, 2010, 36(10):1184-1188. https://bhxb.buaa.edu.cn/CN/Y2010/V36/I10/1184

    WEI D S, WANG Y R.On the high stress gradient and failure analysis of dovetail attachments[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(10):1184-1188(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2010/V36/I10/1184
    [20] GARCIA D B, GRANDT A F.Fractographic characteristics associated with fretting fatigue cracks in turbomachinery alloys: AIAA-2003-1682[R].Reston: AIAA, 2003.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  2
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-02
  • 录用日期:  2020-04-03
  • 刊出日期:  2020-10-20

目录

    /

    返回文章
    返回
    常见问答