留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高超声速滑翔再入在线轨迹规划算法

李俊 江振宇

李俊, 江振宇. 一种高超声速滑翔再入在线轨迹规划算法[J]. 北京航空航天大学学报, 2020, 46(3): 579-587. doi: 10.13700/j.bh.1001-5965.2019.0262
引用本文: 李俊, 江振宇. 一种高超声速滑翔再入在线轨迹规划算法[J]. 北京航空航天大学学报, 2020, 46(3): 579-587. doi: 10.13700/j.bh.1001-5965.2019.0262
LI Jun, JIANG Zhenyu. Online trajectory planning algorithm for hypersonic glide re-entry problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 579-587. doi: 10.13700/j.bh.1001-5965.2019.0262(in Chinese)
Citation: LI Jun, JIANG Zhenyu. Online trajectory planning algorithm for hypersonic glide re-entry problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 579-587. doi: 10.13700/j.bh.1001-5965.2019.0262(in Chinese)

一种高超声速滑翔再入在线轨迹规划算法

doi: 10.13700/j.bh.1001-5965.2019.0262
详细信息
    作者简介:

    李俊 男, 硕士研究生。主要研究方向:飞行器动力学与制导

    江振宇 男, 博士, 教授, 硕士生导师。主要研究方向:飞行器动力学与制导

    通讯作者:

    江振宇.E-mail: jiang_nudt@sina.com

  • 中图分类号: V448

Online trajectory planning algorithm for hypersonic glide re-entry problem

More Information
  • 摘要:

    为了提高滑翔再入飞行器响应动态任务的能力并提高其制导系统的鲁棒性,建立了高超声速滑翔再入轨迹规划问题的一种在线求解算法。该算法以一列凸子问题来逼近原问题。通过选择以弧长为自变量并引入对数速度代替速度作为状态,使得动力学方程的非线性大为减弱,同时使动压和热流约束完全成为线性约束。通过使用类似于混合整数规划中割平面的思想处理禁飞区约束,尽可能避免了不必要的计算。通过直接以气动系数和大气密度的乘积作为控制量,构造伪线性控制模型,进一步减弱非线性。非凸约束被适当松弛,以保证子问题的可行性。为了避免过度松弛,利用离线给定的高度和速度上下边界估计对应的参数,以加速收敛。以X-33再入任务为例验证了所提算法的有效性。该算法可以以简单的常值函数为初值并在数次迭代后收敛。

     

  • 图 1  禁飞区和割平面

    Figure 1.  No-fly zone and cutting plane

    图 2  高度曲线

    Figure 2.  Altitude curves

    图 3  速度曲线

    Figure 3.  Speed curves

    图 4  水平轨迹

    Figure 4.  Horizontal trajectory

    图 5  动压曲线

    Figure 5.  Dynamic pressure curves

    图 6  热流曲线

    Figure 6.  Heat flux curves

    图 7  过载曲线

    Figure 7.  Overload curves

    图 8  迎角曲线

    Figure 8.  Angle of attack curves

    图 9  倾侧角曲线

    Figure 9.  Angle of bank curves

    图 10  气动模型匹配误差

    Figure 10.  Aerodynamic model matching error

    图 11  松弛误差

    Figure 11.  Relaxation error

    表  1  主要任务参数

    Table  1.   Main task parameters

    参数 数值
    初始高度h0/km 70
    初始经度θ0/(°) 0
    初始纬度ϕ0/(°) 0
    初始速度V0/(m·s-1) 7 000
    初始速度倾角γ0/(°) -1.5
    初始航向角ψ0/(°) 0
    初始倾侧角σ0/(°) 0
    终点高度hf/km 25
    终点经度θf/(°) 12
    终点纬度ϕf/(°) 70
    终点速度Vf/(m·s-1) 700
    最大热流/(kW·m-2) 1 500
    最大动压qmax/kPa 18
    最大过载nmax/g0 2.5
    下载: 导出CSV
  • [1] ISTRATIE V.Optimal profound entry into atmosphere with minimum heat and constraints: AIAA-2001-4069[R].Reston: AIAA, 2001.
    [2] BOLLINO K, OPPENHEIMER M, DOMAN D.Optimal guidance command generation and tracking for reusable launch vehicle reentry: AIAA-2006-6691[R].Reston: AIAA, 2006.
    [3] REA J.Launch vehicle trajectory optimization using a Legendre pseudospectral method: AIAA-2003-5640[R].Reston: AIAA, 2003.
    [4] 黄长强, 国海峰, 丁达理.高超声速滑翔飞行器轨迹优化与制导综述[J].宇航学报, 2014, 35(4):369-379. doi: 10.3873/j.issn.1000-1328.2014.04.001

    HUANG C Q, GUO H F, DING D L.A survey of trajectory optimization and guidance for hypersonic gliding vehicle[J].Journal of Astronautics, 2014, 35(4):369-379(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.04.001
    [5] HARPOLD J C, GAVERT D E.Space shuttle entry guidance performance results[J].Journal of Guidance, Control, and Dynamics, 1983, 6(6):442-447. doi: 10.2514/3.8523
    [6] ROENNEKE A J, MARKL A.Re-entry control to a drag-vs-energy profile[J].Journal of Guidance, Control, and Dynamics, 1994, 17(5):916-920. doi: 10.2514/3.21290
    [7] LEAVITT J A, MEASE K D.Feasible trajectory generation for atmospheric entry guidance[J].Journal of Guidance, Control, and Dynamics, 2007, 30(2):473-481. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf7e368091bb0043434c987a691d5ca5
    [8] 李昭莹, 黄兴李, 李惠峰.基于闭环解析解的可重复使用运载器轨迹在线生成方法[J].宇航学报, 2013, 34(6):755-762. doi: 10.3873/j.issn.1000-1328.2013.06.003

    LI Z Y, HUANG X L, LI H F.On-line trajectory generation method based on closed-form analytical solution for reusable launch vehicle[J].Journal of Astronautics, 2013, 34(6):755-762(in Chinese). doi: 10.3873/j.issn.1000-1328.2013.06.003
    [9] 胡锦川, 张晶, 陈万春.高超声速飞行器平稳滑翔弹道解析解及其应用[J].北京航空航天大学学报, 2016, 42(5):961-968. doi: 10.13700/j.bh.1001-5965.2015.0330

    HU J C, ZHANG J, CHEN W C.Analytical solutions of steady glide trajectory for hypersonic vehicle and planning application[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):961-968(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0330
    [10] BOYD S, VANDENBERGHE L.Convex optimization[M].Cambridge:Cambridge University Press, 2004:157-160.
    [11] NESTEROV Y, NEMIROVSKII A.Interior-point polynomial algorithms in convex programming[M].Philadelphia:Society for Industrial and Applied Mathematics Press, 1994:102-137.
    [12] LIU X, SHEN Z, LU P.Entry trajectory optimization by second-order cone programming[J].Journal of Guidance, Control, and Dynamics, 2016, 39(2):227-241. http://cn.bing.com/academic/profile?id=fea41f0e6900ce265610ac77b34fc2a4&encoded=0&v=paper_preview&mkt=zh-cn
    [13] WANG Z, GRANT M J.Constrained trajectory optimization for planetary entry via sequential convex programming: AIAA-2016-3241[R].Reston: AIAA, 2016.
    [14] BALAS E, CERIA S, CORNUÉJOLS G.A lift-and-project cutting plane algorithm for mixed 0-1 programs[J].Mathematical Programming, 1993, 58(1-3):295-324. doi: 10.1007/BF01581273
    [15] MARCHAND H, MARTIN A, WEISMANTEL R, et al.Cutting planes in integer and mixed integer programming[J].Discrete Applied Mathematics, 2002, 123(1-3):397-446. doi: 10.1016/S0166-218X(01)00348-1
    [16] TOMÁS-RODRÍGUEZ M, BANKS S P.Linear, time-varying approximations to nonlinear dynamical systems:With applications in control and optimization[M].Berlin:Springer, 2010:112-131.
    [17] BANKS S P, DINESH K.Approximate optimal control and stability of nonlinear finite-and infinite-dimensional systems[J].Annals of Operations Research, 2000, 98:19-44. doi: 10.1023/A:1019279617898
    [18] LOFBERG J.YALMIP: A toolbox for modeling and optimization in MATLAB[C]//2004 IEEE International Conference on Robotics and Automation.Piscataway, NJ: IEEE Press, 2004: 284-289.
    [19] ANDERSEN E D, ANDERSEN K D.The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm[M]//HANS F, KEES R, TAMÁS T.High performance optimization.Berlin: Springer, 2000: 197-232.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  22
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-28
  • 录用日期:  2019-06-29
  • 刊出日期:  2020-03-20

目录

    /

    返回文章
    返回
    常见问答