## 留言板

 引用本文: 姬晓琴, 肖利红, 陈文辉等 . 基于T-H方程的多脉冲最优交会方法[J]. 北京航空航天大学学报, 2014, 40(7): 905-909.
Ji Xiaoqin, Xiao Lihong, Chen Wenhuiet al. Optimal multi-impulse rendezvous based on T-H equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7): 905-909. doi: 10.13700/j.bh.1001-5965.2013.0488(in Chinese)
 Citation: Ji Xiaoqin, Xiao Lihong, Chen Wenhuiet al. Optimal multi-impulse rendezvous based on T-H equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7): 905-909. (in Chinese)

## 基于T-H方程的多脉冲最优交会方法

##### doi: 10.13700/j.bh.1001-5965.2013.0488

###### 作者简介:姬晓琴（1971-），女，河南辉县人，高级工程师，ji_xiaoqin@126.com.
• 中图分类号: V448.2

## Optimal multi-impulse rendezvous based on T-H equations

• 摘要: 针对椭圆参考轨道交会问题，采用T-H方程描述相对运动，提出了一种时间固定燃料最省的多脉冲最优交会方法，优化参数为交会脉冲及其施加时刻.当考虑到J2摄动或航天器初始相对距离较大时，用T-H方程进行状态预测其线性化误差一般不容忽略，而若用轨道积分预测则耗时较多，进而导致优化时间过长.针对此问题，提出一种采用前一优化脉冲节点的状态导出的轨道根数预测当前节点状态的预测方法.该方法简单实用，有效地加快了优化收敛速度.最后基于多脉冲优化解进行了数值轨道积分以验证交会精度.仿真结果表明，即使加上J2摄动，在初始相对距离为1 000 km时，该方法的终端位置精度仍能达到75 m.

•  [1] 林来兴. 空间交会对接技术[M].北京:国防工业出版社, 1995:1 Lin Laixing.Space rendezvous and docking technology[M].Beijing:National Defence Industry Press, 1995:1(in Chinese) [2] Clohessy W H, Wiltshire R S.Terminal guidance system for satellite rendezvous[J].Journal of Aerospace Science, 1960, 27(9): 653-658 [3] Lawden D F. Optimal trajectories for space navigation[M].London:Butterworths, 1963 [4] Handelsman M, Lion P M.Primer vector on fixed-time impulse trajectories[J].AIAA Journal, 1968, 6(1):127-132 [5] Lawden D F. Fundamentals of space navigation[J].Journal of the British Interplanetary Society, 1954, 13(2):87-101 [6] Tschauner J, Hempel P.Rendezvous zu einem in elliptischer bahn umlaufenden ziel[J].Astronautica Acta, 1965, 11(2):104-109 [7] Yamanaka k, Ankersen F.New state transition matrix for relative motion on an arbitrary elliptical orbit[J].Journal of Guidance, Control, and Dynamics, 2002, 25(1):60-66 [8] Carter T, Humi M.Fuel-optimal rendezvous near a point in general Keplerian orbit[J].Journal of Guidance, Control, and Dynamics, 1987, 10(6):567-573 [9] Carter T. New form for the optimal rendezvous equations near a Keplerian orbit[J].Journal of Guidance, Control, and Dynamics, 1990, 13(1):183-186 [10] Carter T, Alvarez S A.Quadratic-based computation of four-impulse optimal rendezvous near circular orbit[J].Journal of Guidance, Control, and Dynamical Astronomy, 2003, 23(1):109-117 [11] Carter T, Humi M.A new approach to impulse rendezvous near circular orbit[J].Celestial Mechanics and Dynamical Astronomy, 2012, 112(4):385-426 [12] 谌颖. 空间最优交会控制理论与方法研究[D].哈尔滨:哈尔滨工业大学, 1992 Chen Ying.Space optimal rendezvous control theory and methods[D].Harbin:Harbin Institute of Technology, 1992(in Chinese) [13] 杨乐平, 朱彦伟, 黄涣.航天器相对运动轨迹规划与控制[M].北京:国防工业出版社, 2010:110-124 Yang Leping, Zhu Yanwei, Huang Huan.Spacecraft relative motion trajectory planning and control[M].Beijing:National Defence Industry Press, 2010:110-124(in Chinese) [14] 荆武兴, 陈伟跃. 摄动椭圆参考轨道上的最优精确交会[J].中国空间科学技术, 2011, 31(2):16-24 Jing Wuxing, Chen Weiyue.Fuel-optimal precise rendezvous guidance law in elliptical reference orbit with J2 perturbation[J].Chinese Space Science and Technology, 2011, 31(2):16-24(in Chinese) [15] 宋旭民, 范丽, 陈勇.考虑轨道摄动影响的多冲量交会规划方法研究[J].航天控制, 2011, 29(4):71-74 Song Xumin, Fan Li, Chen Yong.The research on the multi-impulse rendezvous trajectory planning with orbit perturbation[J].Aerospace Control, 2011, 29(4):71-74(in Chinese) [16] 谭丽芬. 赤道椭圆交会轨道规划与制导方法[D].长沙:国防科学技术大学, 2011 Tan Lifen.Rendezvous trajectory planning and guidance approach for equatorial elliptical orbit[D].Changsha:National University of Defense Technology, 2011(in Chinese) [17] Gim D W, Alfriend K T.State transition matrix of relative motion for the perturbed non circular reference orbit[J].Journal of Guidance, Control, and Dynamics, 2003, 26(6):956-971

##### 计量
• 文章访问数:  1029
• HTML全文浏览量:  3
• PDF下载量:  648
• 被引次数: 0
##### 出版历程
• 收稿日期:  2013-08-21
• 刊出日期:  2014-07-20

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈

常见问答