## 留言板

 引用本文: 徐元铭, 李松泽. 整体次加筋壁板屈曲载荷近似计算方法[J]. 北京航空航天大学学报, 2015, 41(3): 369-374.
XU Yuanming, LI Songze. Approximate calculation method of buckling load on integral sub-stiffened panel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 369-374. doi: 10.13700/j.bh.1001-5965.2014.0240(in Chinese)
 Citation: XU Yuanming, LI Songze. Approximate calculation method of buckling load on integral sub-stiffened panel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 369-374. (in Chinese)

## 整体次加筋壁板屈曲载荷近似计算方法

##### doi: 10.13700/j.bh.1001-5965.2014.0240

###### 通讯作者: 徐元铭(1965-),男,江苏武进人,教授,xuymg@sina.com,主要研究方向为飞行器结构设计、结构优化、神经网络专家系统.
• 中图分类号: V214.4

## Approximate calculation method of buckling load on integral sub-stiffened panel

• 摘要: 为了在初步设计阶段能够快速计算整体次加筋板的失稳载荷,在一些合理假设的基础上,提出了一种简单的近似计算方法.以无缺陷的四边简支的矩形次加筋板为研究对象,针对该结构的3种失稳形式,利用传统加筋板理论分别计算相应的屈曲载荷,并以3种失稳形式中最小的临界屈曲载荷作为整体次加筋板的近似屈曲载荷.应用ABAQUS软件的屈曲线性摄动步方法分别计算了两组有限元模型:一组用来验证3种失效形式理论公式计算的准确度;另一组是整体次加筋板有限元模型,用以验证所提出的次加筋板屈曲载荷计算方法的适用性.以上研究均考虑了纵向压缩载荷和压剪组合载荷两种工况.计算结果表明,理论近似计算方法能够准确地计算次加筋板的失稳载荷,有一定的工程应用价值.

•  [1] Mulani S B, Slemp W C H,Kapania R K.EBF3PanelOpt:an optimization framework for curvilinear blade-stiffened panels[J].Thin-Walled Structures,2013,63:13-26. [2] Murphy A, Quinn D,Mawhinney P,et al.Tailoring static strength performance of metallic stiffened panels by selective local sub-stiffening[C]//Proceedings of the Forty Seventh AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Reston:AIAA,2006:1-4. [3] Farley G L. Selective reinforcement to enhance the structural performance of metallic compression panels[C]//45th AIAA/ASME/ASCE/AHS/ASCSDM Conference.Reston:AIAA,2004. [4] Bushnell D, Rankin C.Optimum design of stiffened panels with substiffeners[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Reston:AIAA,2005:1-54. [5] Watson A, Featherston C A,Kennedy D.Optimization of postbuckled stiffened panels with multiple stiffener sizes[C]//Proceedings of the Forty Eighth AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Reston: AIAA,2007:23-26. [6] Quinn D, Murphy A,Mcewan W,et al.Non-prismatic sub-stiffening for stiffened panel plates-stability behaviour and performance gains[J].Thin-Walled Structures,2010,48(6):401-413. [7] Quinn D, Murphy A,Mcewan W,et al.Stiffened panel stability behaviour and performance gains with plate prismatic sub-stiffening[J].Thin-Walled Structures,2009,47(12):1457-1468. [8] Özakça M, Murphy A,Van der Veen S.Buckling and post-buckling of sub-stiffened or locally tailored aluminium panels[C]//25th International Congress of the Aeronautical Sciences.Bonn:ICAS,2006:3-8. [9] Khvyiuzov A, Xu Y M.Initial buckling of compressed rectangular panels with variable stiffener sizes[J].Advanced Materials Research,2014,915:150-164. [10] 王博,田阔, 郝鹏,等.多级加筋板结构承载性能与缺陷敏感度研究[J].固体火箭技术,2014,37(3):408-412. Wang B,Tian K,Hao P,et al.Load-carrying capacity and imperfection-sensitivity analysis of hierarchical stiffened panels[J].Journal of Solid Rocket Technology,2014,37(3):408-412(in Chinese). [11] 肖明心. 板的稳定理论[M].1版.成都:四川科学技术出版社,1993:61-87. Xiao M X.Stability theory of plate[M].1st ed.Chengdu: Sichuan Science and Technology Press,1993:61-87(in Chinese). [12] Timoshenko S. Theory of elastic stability[M].2nd ed.Dover:Dover Publications Inc,2009:348-356. [13] Bleich F. Buckling strength of metal structures[M].New York:McGraw-Hill,1952:349-385. [14] Lynch C, Murphy A,Price M,et al.The computational post buckling analysis of fuselage stiffened panels loaded in compression[J].Thin-Walled Structures,2004,42(10):1445-1464. [15] Murphy A, Price M,Lynch C,et al.The computational post-buckling analysis of fuselage stiffened panels loaded in shear[J].Thin-Walled Structures,2005,43(9):1455-1474.

##### 计量
• 文章访问数:  980
• HTML全文浏览量:  2
• PDF下载量:  55095
• 被引次数: 0
##### 出版历程
• 收稿日期:  2014-04-30
• 刊出日期:  2015-03-20

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈

常见问答