## 留言板

 引用本文: 邓昊, 程伟. 横向加强构件作用下的开口薄壁梁等效建模方法[J]. 北京航空航天大学学报, 2016, 42(7): 1469-1478.
DENG Hao, CHENG Wei. Equivalent modeling method of open thin-walled beam under action of transverse stiffening member[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1469-1478. doi: 10.13700/j.bh.1001-5965.2015.0456(in Chinese)
 Citation: DENG Hao, CHENG Wei. Equivalent modeling method of open thin-walled beam under action of transverse stiffening member[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1469-1478. (in Chinese)

• 中图分类号: TV312

## Equivalent modeling method of open thin-walled beam under action of transverse stiffening member

• 摘要: 卫星结构中通常有大量横向加强构件作用下的开口薄壁杆件，横向加强构件一般沿杆件轴向均匀分布，通过对这类结构研究，理论上证明了这种结构的振动微分方程与普通的开口薄壁梁振动微分方程有相同的形式，因此可以用开口薄壁梁单元进行等效计算。本文建立了开口薄壁梁的3种数学模型：有限元模型、传递矩阵模型和解析模型。采用优化理论中序列二次规划对等效截面参数进行辨识，同时分析了不同目标函数对辨识结果的影响，并且提出了一种对截面初始参数进行估计的方法。对于有限元模型，提出采用MATLAB与ABAQUS交互式参数优化方法，充分结合二者优点可以快速高效地对截面参数进行优化辨识，具有较强的通用性。通过实验验证了这种等效建模方法的正确性与精确性。所提出的等效建模方法可以减少90%以上的单元数量。通过建立这种简化模型，可以大幅度提高整星结构模型修正与结构重分析的效率。

•  [1] BROWN A M,SEUGLING R M.Using plate finite elements for modeling fillets in global response analysis[J].Finite Elements in Analysis and Design,2004,40(13-14):1963-1975. [2] ARPACI A,BOZDAG E.On free vibration analysis of thin-walled beams with nonsymmetrical open cross-sections[J].Computers and Structures,2002,80(7-8):691-695. [3] ARPACI A,BOZDAG S E,SUNBULOGLU E.Triply coupled vibrations of thin-walled open cross-section beams including rotary inertia effects[J].Journal of Sound and Vibration,2003,260(5):889-900. [4] PROKI A.On triply coupled vibrations of thin-walled beams with arbitrary cross-section[J].Journal of Sound and Vibration,2005,279(3-5):723-737. [5] AMBROSINI R D.A modified Vlasov theory for dynamic analysis of thin-walled and variable open section beams[J].Engineering Structures,2000,22(8):890-900. [6] AMBROSINI R D,RIERA J D,DANESI R F.Dynamic analysis of thin-walled and variable open section beams with shear flexibility[J].International Journal for Numerical Methods in Engineering,1995,38(17):2867-2885. [7] PROKI A.On fivefold coupled vibrations of Timoshenko thin-walled beams[J].Engineering Structures,2006(28):54-62. [8] YAMAN Y.Vibrations of open-section channels:A coupled flexural and torsional wave analysis[J].Journal of Sound and Vibration,1997,204(1):131-158. [9] 包世华,周坚.薄壁杆件结构力学[M].北京:中国建筑工业出版社,2006:190-193.BAO S H,ZHOU J.Structural mechanics of thin-walled rod member[M].Beijing:China Building Industry Press,2006:190-193(in Chinese). [10] 王晓峰,张其林,杨庆山.新型空间薄壁梁单元[J].应用数学和力学,2010,31(9):1089-1100.WANG X F,ZHANG Q L,YANG Q S.New finite element of spatial thin-walled beams[J].Applied Mathematics and Mechanics,2010,31(9):1089-1100(in Chinese). [11] MOHRI F,EDDINARI A,DAMIL N,et al.A beam finite element for non-linear analyses of thin walled elements[J].Thin-Walled Structures,2008,46(7-9):981-990. [12] KIM N,KIM M Y.Exact dynamic/static stiffness matrices of non-symmetric thin-walled beams considering coupled shear deformation effects[J].Thin-Walled Structures,2005,43(5):701-734． [13] AMBROSINI D.On free vibration of nonsymmetrical thin-walled beams[J].Thin-Walled Structures,2009,47(6-7):629-636. [14] HAN S P.Super linearly convergent variable metric algorithms for general nonlinear programming problems[J].Mathematical Programming,1976,11(1):263-282. [15] HAN S P.A globally convergent method for nonlinear programming[J].Journal of Optimization Theory and Applications,1977,22(3):297-309. [16] POWELL M J D.A fast algorithms for nonlinearly constrainted optimization calculations [M]//WATSON G.Numerical analysis.Heidelberg:Springer,1978:144-157. [17] 钱伟长,林鸿荪,胡海昌.弹性柱体扭转理论[M].北京:科学出版社,1956:178-179.QAN W C,LIN H S,HU H C.Torsion bar elastic theory[M].Beijing:Science Press,1956:178-179(in Chinese).

##### 计量
• 文章访问数:  515
• HTML全文浏览量:  0
• PDF下载量:  670
• 被引次数: 0
##### 出版历程
• 收稿日期:  2015-07-07
• 刊出日期:  2016-07-20

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈

常见问答