留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种MEMS陀螺随机漂移的高精度建模方法

王可东 武雨霞

王可东, 武雨霞. 一种MEMS陀螺随机漂移的高精度建模方法[J]. 北京航空航天大学学报, 2016, 42(8): 1584-1592. doi: 10.13700/j.bh.1001-5965.2015.0510
引用本文: 王可东, 武雨霞. 一种MEMS陀螺随机漂移的高精度建模方法[J]. 北京航空航天大学学报, 2016, 42(8): 1584-1592. doi: 10.13700/j.bh.1001-5965.2015.0510
WANG Kedong, WU Yuxia. An accurate modeling method for random drift of MEMS gyro[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1584-1592. doi: 10.13700/j.bh.1001-5965.2015.0510(in Chinese)
Citation: WANG Kedong, WU Yuxia. An accurate modeling method for random drift of MEMS gyro[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1584-1592. doi: 10.13700/j.bh.1001-5965.2015.0510(in Chinese)

一种MEMS陀螺随机漂移的高精度建模方法

doi: 10.13700/j.bh.1001-5965.2015.0510
详细信息
    作者简介:

    王可东,男,博士,副教授。主要研究方向:卫星/惯性组合导航、天文/惯性组合导航、最优滤波算法和地形匹配算法等。Tel.:010-82339586。E-mail:wangkd@buaa.edu.cn;武雨霞,女,硕士研究生。主要研究方向:车载GNSS/INS组合导航及初始对准。Tel.:010-82339586。E-mail:wuyuxia@buaa.edu.cn

    通讯作者:

    王可东,Tel.:010-82339586,E-mail:wangkd@buaa.edu.cn

  • 中图分类号: V241.62;V19

An accurate modeling method for random drift of MEMS gyro

  • 摘要: 为补偿MEMS陀螺随机漂移,采用时间序列分析法对其进行自回归滑动平均(ARMA)模型辨识,提出一种滑动平均(MA)参数估计的新方法。先将陀螺随机漂移建模为带观测噪声的ARMA模型,在估计出自回归(AR)部分的参数后,针对AR滤波后的残差,推导出一种方差小的MA自协方差估计值,并将该估计值作为输入,利用Gevers-Wouters(GW)算法估计出MA部分的参数。仿真结果表明,MA参数估计精度得到提升的同时,参数估计可靠性也得到了增强。MEMS陀螺的随机漂移补偿实验进一步验证本文所提算法的补偿精度高于改进前。

     

  • [1] 曾庆化,黄磊,刘建业,等.基于ARMA模型的光纤陀螺随机噪声滤波方法[J].中国惯性技术学报,2015,23(1):120-124.ZENG Q H,HUANG L,LIU J Y,et al.Real-time filtering methods of FOG random noise based on ARMA model[J].Journal of Chinese Inertial Technology,2015,23(1):120-124(in Chinese).
    [2] STEBLER Y,GUERRIER S,SKALOUD J,et al.Improving modeling of MEMS-IMUs operating in GNSS-denied conditions[C]//Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation(ION GNSS 2011).Washington,D.C.:INST Navigation,2011:2417-2426.
    [3] 袁赣南,梁海波,何昆鹏,等.MEMS陀螺随机漂移在线补偿技术[J].北京航空航天大学学报,2010,36(12):1448-1452.YUAN G N,LIANG H B,HE K P,et al.On-line compensation technique for micro mechanical gyroscope random error[J].Journal of Beijing University of Aeronautics and Astronautics,2010,36(12):1448-1452(in Chinese).
    [4] FATTAH S A,ZHU W P,AHMAD M O.An identification technique for noisy ARMA systems in correlation domain[C]//IEEE International Symposium on Circuits and System.Piscataway,NJ:IEEE Press,2007:349-352.
    [5] FATTAH S A,ZHU W P,AHMAD M O.Identification of autoregressive moving average systems from noise-corrupted observations[C]//Joint IEEE North-East Workshop on Circuits and Systems/TAISA Conference.Piscataway,NJ:IEEE Press,2008:69-72.
    [6] FATTAH S A,ZHU W P,AHMAD M O.Identification of autoregressive moving average systems based on noise compensation in the correlation domain[J].IET Signal Processing,2011,5(3):292-305.
    [7] BROERSEN P M T.Modified Durbin method for accurate estimation of moving-average models[J].IEEE Transactions on Instrumentation and Measurement,2009,58(5):1361-1369.
    [8] BOX G E P,JENKINS G M,REINSEL G C.Time series analysis:Forecasting and control[M].Hoboken:John Wiley & Sons,2011:140-145.
    [9] ABO-HAMMOUR Z S,ALSMADI O M K,AL-SMADI A M,et al.ARMA model order and parameter estimation using genetic algorithms[J].Mathematical and Computer Modelling of Dynamical Systems,2012,18(2):201-221.
    [10] 范菁.ARMA模型的两种共轭梯度参数估计法及ARIMAX模型的应用[D].秦皇岛:燕山大学,2009:23-34.FAN J.The two methods of conjugate gradient parameters estimation of ARMA model and the application of the ARIMAX model[D].Qinhuangdao:Yanshan University,2009:23-34(in Chinese).
    [11] 邓自立,王欣,高媛.建模与估计[M].北京:科学出版社,2007:260-271.DENG Z L,WANG X,GAO Y.Modeling and estimation[M].Beijing:Science Press,2007:260-271(in Chinese).
    [12] TAO G L,DENG Z L.Self-tuning fusion Kalman filter for multisensor single-channel ARMA signals with coloured noises[J].IMA Journal of Mathematical Control and Information,2015,32(1):55-74.
    [13] KADERLI A,KAYHAN A S.Spectral estimation of ARMA processes using ARMA-cepstrum recursion[J].IEEE Signal Processing Letters,2000,7(9):259-261.
    [14] MENDEL J M.Tutorial on higher-order statistics (spectra) in signal processing and system theory:Theoretical results and some applications[J].Proceedings of the IEEE,1991,79(3):278-305.
    [15] 王可东,熊少锋.ARMA建模及其在Kalman滤波中的应用[J].宇航学报,2012,33(8):1048-1055.WANG K D,XIONG S F.An ARMA modeling method and its application to Kalman filtering[J].Journal of Astronautics,2012,33(8):1048-1055(in Chinese).
    [16] SODERSTROM T,STOICA P.System identification[M].London:Prentice Hall,1989:570-575.
    [17] 肖创柏,罗晖,李衍达.基于OIVPM的特征值确定ARMA模型的结构[J].自动化学报,1996,22(1):68-73.XIAO C B,LUO H,LI Y D.ARMA model order determination based on the eigenvalues of the overdetermined instrumental variable produce moment[J].Acta Automatica Sinica,1996,22(1):68-73(in Chinese).
  • 加载中
计量
  • 文章访问数:  689
  • HTML全文浏览量:  0
  • PDF下载量:  1480
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-31
  • 刊出日期:  2016-08-20

目录

    /

    返回文章
    返回
    常见问答