留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信息融合的网络安全态势量化评估方法

文志诚 陈志刚 唐军

文志诚, 陈志刚, 唐军等 . 基于信息融合的网络安全态势量化评估方法[J]. 北京航空航天大学学报, 2016, 42(8): 1593-1602. doi: 10.13700/j.bh.1001-5965.2015.0561
引用本文: 文志诚, 陈志刚, 唐军等 . 基于信息融合的网络安全态势量化评估方法[J]. 北京航空航天大学学报, 2016, 42(8): 1593-1602. doi: 10.13700/j.bh.1001-5965.2015.0561
WEN Zhicheng, CHEN Zhigang, TANG Junet al. Assessing network security situation quantitatively based on information fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1593-1602. doi: 10.13700/j.bh.1001-5965.2015.0561(in Chinese)
Citation: WEN Zhicheng, CHEN Zhigang, TANG Junet al. Assessing network security situation quantitatively based on information fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1593-1602. doi: 10.13700/j.bh.1001-5965.2015.0561(in Chinese)

基于信息融合的网络安全态势量化评估方法

doi: 10.13700/j.bh.1001-5965.2015.0561
基金项目: 国家自然科学基金(61379057,61309027,61073186);湖南省自然科学基金(2016JJ5034)
详细信息
    作者简介:

    文志诚,男,博士,教授,硕士生导师。主要研究方向:网络安全与软件工程。E-mail:zcwen@mail.shu.edu.cn;陈志刚,男,博士,教授,博士生导师。主要研究方向:分布式处理。Tel.:13387480797。E-mail:czg@mail.csu.edu.cn

    通讯作者:

    陈志刚,Tel.:13387480797,E-mail:czg@mail.csu.edu.cn

  • 中图分类号: TP311

Assessing network security situation quantitatively based on information fusion

  • 摘要: 针对目前网络安全态势评估大多存在信息来源单一、评估范围有限、模型不易构建、时空开销大且可信度较低等问题,提出了一种多源异构信息融合量化评估网络安全态势的方法。首先,构建分级朴素贝叶斯分类器,快速高效地融合主机上各多源异构非确定性信息源。然后,利用拉普拉斯原理平滑参数学习,优化分类与推理结果。使用数理统计的方法融合网络上各主机的安全指数,量化评估网络安全态势,对当前网络安全状况有一个宏观整体的认识。最后,通过真实网络环境的实验,验证了所提方法在网络安全态势评估中的可行性和有效性。

     

  • [1] BASS T.Intrusion detection systems and multisensory data fusion[J].Communications of the ACM,2000,43(4):99-105.
    [2] JANSEN A,MELCHERS K G,LIEVENS F,et al.Situation assessment as an ignored factor in the behavioral consistency paradigm underlying the validity of personnel selection procedures[J].Journal of Applied Psychology,2013,98(2):326-341.
    [3] SHARMA C,KATE V.ICARFAD:A novel framework for improved network security situation awareness[J].International Journal of Computer Applications,2014,87(19):26-31.
    [4] BECHTSOUDIS A,SKLAVOS N.Aiming at higher network security through extensive penetration tests[J].IEEE Latin America Transactions,2012,10(3):1752-1756.
    [5] 黄同庆,庄毅.一种实时网络安全态势预测方法[J].小型微型计算机系统,2014,35(2):303-306.HUANG T Q,ZHUANG Y.An approach to real-time network security situation prediction[J].Journal of Chinese Computer Systems,2014,35(2):303-306(in Chinese).
    [6] 刘玉岭,冯登国,连一峰,等.基于时空维度分析的网络安全态势预测方法[J].计算机研究与发展,2014,51(8):1681-1694.LIU Y L,FENG D G,LIAN Y F,et al.Network situation prediction method based on spatial-time dimension analysis[J].Journal of Computer Research and Development,2014,51(8):1681-1694(in Chinese).
    [7] 谢丽霞,王亚超,于巾博.基于神经网络的网络安全态势感知[J].清华大学学报(自然科学版),2013,53(12):1750-1760.XIE L X,WANG Y C,YU J B.Network security situation awareness based on neural networks[J].Journal of Tsinghua University(Science and Technology),2013,53(12):1750-1760(in Chinese).
    [8] 席荣荣,云晓春,张永铮,等.一种改进的网络安全态势量化评估方法[J].计算机学报,2015,38(4):749-758.XI R R,YUN X C,ZHANG Y Z,et al.An improved quantitative evaluation method for network security[J].Chinese Journal of Computers,2015,38(4):749-758(in Chinese).
    [9] 张勇,谭小彬,崔孝林,等.基于Markov博弈模型的网络安全态势感知方法[J].软件学报,2011,22(3):495-508.ZHANG Y,TAN X B,CUI X L,et al.Network security situation awareness approach based on Markov game model[J].Journal of Software,2011,22(3):495-508(in Chinese).
    [10] KHREICH W,GRANGER E,MIRI A,et al.Adaptive ROC-based ensembles of HMMs applied to anomaly detection[J].Pattern Recognition,2012,45(1):208-230.
    [11] SENDI A S,DAGENAIS M,JABBARIFAR M,et al.Real time intrusion prediction based on optimized alerts with hidden Markov model[J].Journal of Networks,2012,7(2):311-321.
    [12] LAMINE F B,KALTI K,MAHJOUB M A.The threshold EM algorithm for parameter learning in Bayesian network with incomplete data[J].International Journal of Advanced Computer Science and Applications,2011,2(7):86-91.
    [13] 张轮,杨文臣,刘拓,等.基于朴素贝叶斯分类的高速公路交通事件检测[J].同济大学学报(自然科学版),2014,42(4):558-563.ZHANG L,YANG W C,LIU T,et al.A naive Bayesian classifier-based algorithm for freeway traffic incident detection[J].Journal of Tongji University(Natural Science),2014,42(4):558-563(in Chinese).
    [14] PANDA M,ABRAHAM A,PATRA M R.A hybrid intelligent approach for network intrusion detection[C]//International Conference on Communication Technology and System Design 2011.Amsterdam:Elsevier,2012,30:1-9.
    [15] 国务院.国家突发公共事件总体应急预案[M].北京:中国法制出版社,2006:1-2.The State Council of the People's Republic of China.A overall emergency plans of national public event[M].Beijing:China Legal Press,2006:1-2(in Chinese).
  • 加载中
计量
  • 文章访问数:  655
  • HTML全文浏览量:  2
  • PDF下载量:  844
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-31
  • 刊出日期:  2016-08-20

目录

    /

    返回文章
    返回
    常见问答