留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同后掠角三角翼的静态地面效应数值模拟

秦云鹏 刘沛清 屈秋林 黄列伟

秦云鹏, 刘沛清, 屈秋林, 等 . 不同后掠角三角翼的静态地面效应数值模拟[J]. 北京航空航天大学学报, 2016, 42(12): 2669-2675. doi: 10.13700/j.bh.1001-5965.2015.0844
引用本文: 秦云鹏, 刘沛清, 屈秋林, 等 . 不同后掠角三角翼的静态地面效应数值模拟[J]. 北京航空航天大学学报, 2016, 42(12): 2669-2675. doi: 10.13700/j.bh.1001-5965.2015.0844
QIN Yunpeng, LIU Peiqing, QU Qiulin, et al. Numerical simulation to static ground effect of delta wings with different sweep angles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2669-2675. doi: 10.13700/j.bh.1001-5965.2015.0844(in Chinese)
Citation: QIN Yunpeng, LIU Peiqing, QU Qiulin, et al. Numerical simulation to static ground effect of delta wings with different sweep angles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2669-2675. doi: 10.13700/j.bh.1001-5965.2015.0844(in Chinese)

不同后掠角三角翼的静态地面效应数值模拟

doi: 10.13700/j.bh.1001-5965.2015.0844
基金项目: 

国家自然科学基金 11302015

国家自然科学基金 11272034

航空科学基金 2015ZA51012

详细信息
    作者简介:

    秦云鹏, 男, 博士研究生。主要研究方向:地面效应空气动力学。E-mail:by1105116@buaa.edu.cn

    通讯作者:

    屈秋林, 男, 博士, 副教授, 硕士生导师。主要研究方向:地面效应空气动力学、水上迫降和冲击入水等。Tel.:010-82315463, E-mail:qql@buaa.edu.cn

  • 中图分类号: V211.3;V19

Numerical simulation to static ground effect of delta wings with different sweep angles

Funds: 

National Natural Science Foundation of China 11302015

National Natural Science Foundation of China 11272034

Aeronautical Science Foundation of China 2015ZA51012

More Information
  • 摘要:

    采用数值模拟的方法研究了不同后掠角三角翼的静态地面效应,通过对气动力和流场特性的分析发现,随着后掠角的减小,地面对迎风面下流动的阻滞作用增强,地效导致的迎风面气动力增量也随之增大。地效导致的背风面气动力增量同样随着后掠角的减小而增大,但在不同的后掠角范围内,地效诱导背风面气动力增量的机理不同:中大后掠角下,其主要通过增强前缘涡强度诱导更大的吸力,而小后掠角下,其主要通过促进前缘涡向内扩散增大吸力范围。

     

  • 图 1  三角翼计算模型示意图

    Figure 1.  Sketch map of delta wing calculation models

    图 2  三角翼表面网格拓扑、计算域尺寸和边界条件以及0.6CR位置沿翼面展向的压力分布

    Figure 2.  Surface mesh topology, dimensions and boundary conditions of computational domain, and spanwise pressure distributions of delta wing at 0.6CR

    图 3  不同后掠角三角翼在静态地效下的气动特性

    Figure 3.  Aerodynamics of delta wings with different sweep angles under static ground effect

    图 4  λ=75°、λ=55°和λ=35°三角翼在无界流场和静态地效下迎风面的Cp分布云图以及地效下的Cp增量云图

    Figure 4.  Windward surface Cp distribution contours of λ=75°, λ=55° and λ=35° delta wings in unbounded flow field with static ground effect and Cp increment contours of windward surface due to ground effect

    图 5  典型后掠角三角翼在无界流场前缘涡附近的流线图和流向涡量ωx云图

    Figure 5.  Streamlines and streamwise vorticity ωx contours near leading edge vortex of typical delta wings with typical sweep angles in unbounded flow field

    图 6  λ=75°、λ=55°和λ=35°三角翼在无界流场和静态地效下背风面的Cp分布云图以及地效下的Cp增量云图

    Figure 6.  Leeward surface Cp distribution contours of λ=75°, λ=55° and λ=35° delta wings in unbounded flow field with static ground effect and Cp increment contours of leeward surface due to ground effect

    图 7  不同高度下x=0.5处垂向截面上的流向涡量ωx云图和因地效导致的涡量ωx增量云图

    Figure 7.  Contours of streamwise vorticity ωx on vertical cross sections at x=0.5 of delta wings at different heights and streamwise vorticity ωx increment due to ground effect

  • [1] QU Q L, WANG W, LIU P Q, et al.Airfoil aerodynamics in ground effect for wide range of angles of attack[J].AIAA Journal, 2015, 53(4):1048-1061. doi: 10.2514/1.J053366
    [2] CORDA S, STEPHENSON M T, BURCHAM F W, et al.Dynamic ground effects flight test of an F-15 aircraft:N95-33024[R].Washington, D.C.:NASA, 1994.
    [3] ROZHDESTVENSKY K V.Wing-in-ground effect vehicles[J].Progress in Aerospace Sciences, 2006, 42(3):211-283. doi: 10.1016/j.paerosci.2006.10.001
    [4] QU Q L, JIA X, WANG W, et al.Numerical study of the aerodynamics of a NACA 4412 airfoil in dynamic ground effect[J].Aerospace Science and Technology, 2014, 38:56-63. doi: 10.1016/j.ast.2014.07.016
    [5] SCHWEIKHARD W.A method for in-flight measurement of ground effect on fixed-wing aircraft[J].Journal of Aircraft, 1967, 4(2):101-104. doi: 10.2514/3.43804
    [6] BAKER P A, SCHWEIKHARD W G, YOUNG W R.Flight evaluation of ground effect on several low-aspect-ratio airplanes:NASA-TN-D-6053[R].Washington, D.C.:NASA, 1970.
    [7] CURRY R E.Dynamic ground effect for a cranked arrow wing airplane:AIAA-1997-3649[R].Reston:AIAA, 1997.
    [8] CHANG R C, MUIRHEAD V U.Investigation of dynamic ground effect:N87-24410[R].Washington, D.C.:NASA, 1987.
    [9] CHANG R C, MUIRHEAD V U.Effect of sink rate on ground effect of low-aspect-ratio wings[J].Journal of Aircraft, 1987, 24(3):176-180. doi: 10.2514/3.45413
    [10] CHANG R C.An experimental investigation of dyanmic ground effect[D].Lawrence, KS:University of Kansas, 1985.
    [11] LEE P H, LAN C E, MUIRHEAD V U.An experimental investigation of dynamic ground effect:NASA-CR-4105[R].Washington, D.C.:NASA, 1987.
    [12] LEE P H, LAN C E, MUIRHEAD V U.Experimental investigation of dynamic ground effect[J].Journal of Aircraft, 1989, 26(6):497-498. doi: 10.2514/3.45793
    [13] QU Q L, LU Z, GUO H, et al.Numerical investigation of the aerodynamics of a delta wing in ground effect[J].Journal of Aircraft, 2014, 52(1):329-340. http://or.nsfc.gov.cn/handle/00001903-5/181352
    [14] SPALART P, ALLMARAS S.A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R].Reston:AIAA, 1992.
    [15] MORTON S.Detached-eddy simulations of vortex breakdown over a 70-degree delta wing[J].Journal of Aircraft, 2009, 46(3):746-755. doi: 10.2514/1.4659
    [16] CUMMINGS R M, SCHÜTTE A.Detached-eddy simulation of the vortical flow field about the VFE-2 delta wing[J].Aerospace Science and Technology, 2013, 24(1):66-76. doi: 10.1016/j.ast.2012.02.007
    [17] QIN Y P, QU Q L, LIU P Q, et al.DDES study of the aerodynamic forces and flow physics of a delta wing in static ground effect[J].Aerospace Science and Technology, 2015, 43:423-436. doi: 10.1016/j.ast.2015.04.004
    [18] RIOU J, GARNIER E, BASDEVANT C.Compressibility effects on the vortical flow over a 65° sweep delta wing[J].Physics of Fluids, 2010, 22:035102. doi: 10.1063/1.3327286
    [19] RODRIGUEZ O.Experimental investigations on the VFE-2 configuration at ONERA:RTO-TR-AVT-113 AC/323(AVT-113) TP/246[R].Washington, D.C.:NASA, 2009.
    [20] FRITZ W.Numerical solutions for the VFE-2 configuration on structured grids at EADS-MAS:RTO-TR-AVT-113 AC/323(AVT-113) TP/246[R].Washington, D.C.:NASA, 2009.
    [21] CHEN M Q, LIU P Q, GUO H, et al.Effect of sideslip on high-angle-of-attack vortex flow over close-coupled canard configuration[J].Journal of Aircraft, 2015, 53(1):1-14. doi: 10.2514/1.C033305
  • 加载中
图(7)
计量
  • 文章访问数:  581
  • HTML全文浏览量:  3
  • PDF下载量:  623
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-22
  • 录用日期:  2016-03-18
  • 刊出日期:  2017-12-20

目录

    /

    返回文章
    返回
    常见问答