留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于顺序二元决策图的动态故障树分析

李佩昌 袁宏杰 兰杰 程明

李佩昌, 袁宏杰, 兰杰, 等 . 基于顺序二元决策图的动态故障树分析[J]. 北京航空航天大学学报, 2017, 43(1): 167-175. doi: 10.13700/j.bh.1001-5965.2016.0036
引用本文: 李佩昌, 袁宏杰, 兰杰, 等 . 基于顺序二元决策图的动态故障树分析[J]. 北京航空航天大学学报, 2017, 43(1): 167-175. doi: 10.13700/j.bh.1001-5965.2016.0036
LI Peichang, YUAN Hongjie, LAN Jie, et al. Dynamic fault tree analysis using sequential binary decision diagrams[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 167-175. doi: 10.13700/j.bh.1001-5965.2016.0036(in Chinese)
Citation: LI Peichang, YUAN Hongjie, LAN Jie, et al. Dynamic fault tree analysis using sequential binary decision diagrams[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 167-175. doi: 10.13700/j.bh.1001-5965.2016.0036(in Chinese)

基于顺序二元决策图的动态故障树分析

doi: 10.13700/j.bh.1001-5965.2016.0036
基金项目: 

国防基础科学研究计划 61325102

详细信息
    作者简介:

    李佩昌,男,硕士研究生。主要研究方向:可靠性与环境试验技术;袁宏杰,男,博士,副教授,硕士生导师。主要研究方向:可靠性评估与验证、环境试验设计等

    通讯作者:

    袁宏杰 男,博士,副教授,硕士生导师。主要研究方向:可靠性评估与验证、环境试验设计等. E-mail:yuanhongjie@buaa.edu.cn

  • 中图分类号: TB114.3

Dynamic fault tree analysis using sequential binary decision diagrams

Funds: 

National Defense Basic Scientific Research Program of China 61325102

More Information
  • 摘要:

    针对现有动态故障树分析方法存在的状态空间爆炸、计算效率低、适用范围有限等缺点,提出一种基于顺序二元决策图的动态故障树分析方法。在将动态逻辑门转化为含顺序事件的逻辑门的基础上,给出了顺序二元决策图的模型以及含有顺序事件的布尔运算规则,利用顺序二元决策图和扩展的布尔运算获取动态故障树的失效路径,并给出多单元顺序事件的发生概率。以某弹药为实例,考虑不完全覆盖问题,针对指数分布与非指数分布2种情形进行了动态故障树分析,结果表明该方法具有计算高效、精度高、适用性广泛等优点,为复杂动态系统的可靠性分析提供了理论基础。

     

  • 图 1  两单元优先与门

    Figure 1.  Priority AND gate with two units

    图 2  3种备份门图形符号

    Figure 2.  Graphic symbols for three types of spare gates

    图 3  输入为基本事件的优先与门转化

    Figure 3.  Conversion of priority AND gates with basic events input

    图 4  输入含逻辑门的优先与门转化

    Figure 4.  Conversion of priority AND gates with logic gate input

    图 5  考虑不完全覆盖的温备份门转化

    Figure 5.  Conversion of warm spare gates considering imperfect coverage

    图 6  与门的顺序二元决策图

    Figure 6.  Sequential binary decision diagrams of AND gates

    图 7  或门的顺序二元决策图

    Figure 7.  Sequential binary decision diagrams of OR gates

    图 8  系统的动态故障树

    Figure 8.  Dynamic fault tree of the system

    图 9  转化后的故障树

    Figure 9.  Fault tree after conversion

    图 10  系统的顺序二元决策图

    Figure 10.  Sequential binary decision diagrams of the system

    图 11  部件指数分布情形系统可靠度随时间变化曲线

    Figure 11.  System reliability curves changes over time with elements obeying exponential distribution

    图 12  部件非指数分布情形系统可靠度随时间变化曲线

    Figure 12.  System reliability curves changes over time with elements obeying non-exponential distribution

    表  1  本文方法与基于马尔可夫模型方法的系统可靠度

    Table  1.   Reliability of the system by proposedmethod and Markov-based method

    t/hR(t)
    本文方法马尔可夫模型方法
    5 0000.951 00.951 0
    10 0000.903 70.903 7
    30 0000.729 60.729 6
    50 0000.577 80.577 8
    100 0000.321 60.321 6
    下载: 导出CSV

    表  2  本文方法与基于蒙特卡罗仿真方法的系统可靠度

    Table  2.   Reliability of the system by proposedmethod and Monte Carlo simulation method

    t/hR(t)相对误差/%
    本文方法蒙特卡罗仿真方法
    5 0000.963 40.963 40
    10 0000.927 20.927 20
    30 0000.784 30.784 40.01
    50 0000.647 20.647 40.03
    100 0000.357 20.357 50.08
    下载: 导出CSV

    表  3  本文方法与基于蒙特卡罗仿真方法的运算时间

    Table  3.   Computation time by proposed method andMonte Carlo simulation method

    方法本文方法蒙特卡罗仿真方法
    运算时间/s24.894 048.093 7
    下载: 导出CSV
  • [1] LENG L,LIU Y.Fault tree reliability analysis for passive medium pressure safety injection system in nuclear power plant[J].Energy and Power Engineering,2013,5(4):264-268. doi: 10.4236/epe.2013.54B051
    [2] NYSTROM B,AUSTRIN L,ANKARBACK N,et al.Fault tree analysis of an aircraft electric power supply system to electrical actuators[C]//Probabilistic Methods Applied to Power Systems,2006.Piscataway,NJ:IEEE Press,2006:1-7.
    [3] DUGAN J B,BAVUSO S J,BOYD M A.Dynamic fault-tree for fault-tolerant computer systems[J].IEEE Transactions on Reliability,1992,41(3):363-376. doi: 10.1109/24.159800
    [4] DUGAN J B,SULLIVAN K J,COPPIT D.Developing a low-cost high-quality software tool for dynamic fault-tree analysis[J].IEEE Transactions on Reliability,2000,49(1):49-59. doi: 10.1109/24.855536
    [5] SMOTHERMAN M K,ZEMIUDEH K.A non-homogenedous Makrov model for phased-mission reliability analysis[J].IEEE Transaciton on Reliability,1989,38(5):585-590. doi: 10.1109/24.46486
    [6] DUGAN J B.Galileo:A tool for dynamic fault tree analysis[C]//Proceedings of the 11th International Conference on Computer Performance Evaluation:Modelling Techniques and Tools.Berlin:Springer-Verlag,2000:328-331.
    [7] GULATI R,DUGAN J B.A modular approach for analyzing static and dynamic fault trees[C]//Reliability and Maintainability Symposium.Piscataway,NJ:IEEE Press,1997:57-63.
    [8] AMARI S,DILL G,HOWALD E.A new approach to solve dynamic fault trees[C]//Annual Reliability and Maintainability Symposium.Piscataway,NJ:IEEE Press,2003:374-379.
    [9] BOUDALI H,DUGAN J B.A new Bayesian network approach to solve dynamic fault trees[C]//Reliability and Maintainability Symposium.Piscataway,NJ:IEEE Press,2005:451-456.
    [10] RAO K D,GOPIKA V,RAO V V S S,et al.Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment[J].Reliability Engineering and System Safety,2009,94(4):872-883. doi: 10.1016/j.ress.2008.09.007
    [11] XING L D,SHRESTHA A,DAI Y.Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures[J].Reliability Engineering and System Safety,2011,96(10):1375-1385. doi: 10.1016/j.ress.2011.05.007
    [12] XING L D,TANNOUS O,BECHTA DUGAN J.Reliability analysis of nonrepairable cold-standby systems using sequential binary decision diagrams[J].IEEE Transactions on Systems Man and Cybernetics,2012,42(3):715-726. doi: 10.1109/TSMCA.2011.2170415
    [13] TANNOUS O, XING L,DUGAN J B.Reliability analysis of warm standby systems using sequential BDD[C]//Reliability and Maintainability Symposium.Piscataway,NJ:IEEE Press,2011:1-7.
    [14] DUGAN J B. Fault trees and imperfect coverage[J].IEEE Transactions on Reliability,1989,38(2):177-185. doi: 10.1109/24.31102
    [15] BRYANT R E. Graph-based algorithms for boolean function manipulation[J].IEEE Transactions on Computers,1986,35(8):677-691. http://cn.bing.com/academic/profile?id=15c22d1ca466934ed7cd6d228a51867e&encoded=0&v=paper_preview&mkt=zh-cn
    [16] YUGE T, YANAGI S.Quantitative analysis of a fault tree with priority AND gates[J].Reliability Engineering & System Safety,2008,93(11):1577-1583. http://cn.bing.com/academic/profile?id=a1527a801096cc994c891a053d08f9d6&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  537
  • HTML全文浏览量:  7
  • PDF下载量:  630
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-11
  • 录用日期:  2016-02-29
  • 刊出日期:  2017-01-20

目录

    /

    返回文章
    返回
    常见问答