留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Transition SST模型的高雷诺数圆柱绕流数值研究

雷娟棉 谭朝明

雷娟棉, 谭朝明. 基于Transition SST模型的高雷诺数圆柱绕流数值研究[J]. 北京航空航天大学学报, 2017, 43(2): 207-217. doi: 10.13700/j.bh.1001-5965.2016.0098
引用本文: 雷娟棉, 谭朝明. 基于Transition SST模型的高雷诺数圆柱绕流数值研究[J]. 北京航空航天大学学报, 2017, 43(2): 207-217. doi: 10.13700/j.bh.1001-5965.2016.0098
LEI Juanmian, TAN Zhaoming. Numerical simulation for flow around circular cylinder at high Reynolds number based on Transition SST model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 207-217. doi: 10.13700/j.bh.1001-5965.2016.0098(in Chinese)
Citation: LEI Juanmian, TAN Zhaoming. Numerical simulation for flow around circular cylinder at high Reynolds number based on Transition SST model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 207-217. doi: 10.13700/j.bh.1001-5965.2016.0098(in Chinese)

基于Transition SST模型的高雷诺数圆柱绕流数值研究

doi: 10.13700/j.bh.1001-5965.2016.0098
基金项目: 

国家自然科学基金 11372040

详细信息
    作者简介:

    谭朝明, 男, 硕士研究生。主要研究方向:制导兵器气动设计和复杂流动数值模拟

    通讯作者:

    雷娟棉, 女, 博士, 教授, 博士生导师。主要研究方向:制导兵器气动设计和复杂流动数值模拟, E-mail:leijm@bit.edu.cn

  • 中图分类号: V211.3;O357.5

Numerical simulation for flow around circular cylinder at high Reynolds number based on Transition SST model

Funds: 

National Natural Science Foundation of China 11372040

More Information
  • 摘要:

    为了研究高雷诺数下圆柱绕流边界层的转捩现象和圆柱尾迹近壁区的流动特征,首先通过在典型雷诺数下采用Transition SST四方程转捩模型模拟圆柱绕流得到的结果与实验结果及采用SST k-ω两方程湍流模型模拟结果的对比分析,验证了Transition SST模型在模拟高雷诺数下圆柱绕流的优越性,并较为准确地预测出了圆柱绕流边界层的转捩现象及尾迹近壁区的流动特征。然后分别对亚临界区、临界区、超临界区和过临界区的圆柱绕流问题进行了数值模拟,分析了不同雷诺数下圆柱绕流的流场结构及圆柱表面压力系数、摩擦力系数的变化规律,研究了圆柱绕流近壁区的流动特征、边界层转捩的流动机理、转捩位置及其随雷诺数的变化规律。结果表明,亚临界区二维圆柱绕流边界层发生层流分离,无分离泡和转捩现象;临界区和超临界区二维圆柱绕流边界层先产生了分离泡现象,之后流动发生了转捩并在转捩后发生湍流分离;过临界区二维圆柱绕流边界层流动在转捩之后发生湍流分离,无分离泡现象;在临界区、超临界区和过临界区,二维圆柱绕流边界层转捩位置随雷诺数增大向前驻点移动。

     

  • 图 1  流动示意图

    Figure 1.  Schematic of flow

    图 2  整个计算域网格示意图

    Figure 2.  Schematic of grids of entire computational domain

    图 3  圆柱表面附近网格示意图

    Figure 3.  Schematic of grids of near cylindrical surface

    图 4  在亚临界区圆柱表面时均压力系数Cp分布曲线

    Figure 4.  Distribution curves of time-averaged pressure coeffient Cp on cylindrical surface in subcritical region

    图 5  在亚临界区圆柱表面时均摩擦力系数Cf分布曲线

    Figure 5.  Distribution curves of time-averaged friction coefficent Cf on cylindrical surface in subcritical region

    图 6  在亚临界区时采用Transition SST模型模拟一个周期内的流线

    Figure 6.  Streamline in a period based on transition SST model in subcritical region

    图 7  在临界区圆柱表面时均压力系数Cp分布曲线

    Figure 7.  Distribution curves of time-averaged pressure coefficient Cp on cylindrical surface in critical region

    图 8  在临界区圆柱表面时均摩擦力系数Cf分布曲线

    Figure 8.  Distribution curves of time-averaged friction coefficient Cf on cylindrical surface in critical region

    图 9  在临界区二维圆柱速度矢量图

    Figure 9.  Velocity vector diagram of 2D cylinder in critical region

    图 10  圆柱上表面在图 9的局部放大速度矢量图

    Figure 10.  Local amplification velocity vector diagram in Fig.9 on cylindrical upper surface

    图 11  圆柱上表面间歇因子云图

    Figure 11.  Contour of intermittency factor on cylindrical upper surface

    图 12  圆柱上表面速度云图和流线图

    Figure 12.  Contours of velocity and streamlines on cylindrical upper surface

    图 13  不同雷诺数下圆柱表面时均摩擦力系数Cf和间歇因子γ分布曲线

    Figure 13.  Distribution curves of time-averaged friction coefficient Cf and intermittency factor γ on cylindrical surface under different Reynolds number

    图 14  不同雷诺数下圆柱上表面附近局部流场速度分布云图和流线图

    Figure 14.  Contours of local flow velocity and streamlines near cylinder under different Reynolds number on cylindrical upper surface

    表  1  在亚临界区时二维圆柱时均阻力系数CdSt数值模拟计算结果

    Table  1.   Numerical predicted results of time average drag coefficient Cd and St of 2D cylinder in subcritical region

    模型 Cd St 备注
    SST k-ω模型 1.05 0.24 数值模拟结果
    Transition SST模型 1.20 0.21 数值模拟结果
    Cantwell[16] 1.23 0.18 实验结果
    Schewe[17] 1.18 0.20 实验结果
    苑明顺[3] 1.19 0.21 数值模拟结果
    下载: 导出CSV

    表  2  在临界区时二维圆柱时均阻力系数CdSt数值模拟计算结果

    Table  2.   Numerical predicted results of time average drag coefficient Cd and St of 2D cylinder in critical region

    模型 Cd St 备注
    SST k-ω模型 0.59 0.41 数值模拟结果
    Transition SST模型 0.71 0.48 数值模拟结果
    Achenbach[19] 0.67 Exp.1
    Jones等[22] 0.46 Exp.2
    下载: 导出CSV
  • [1] 伊杰里奇克N E.水力摩阻手册[M].北京:航空发动机编辑部, 1985:256-300.

    YI JIE RITCHIE N E.Hydraulic friction handbook[M].Beijing:Aviation Engine Newsroom, 1985:256-300(in Chinese).
    [2] 凌国灿.圆柱绕流旋涡运动及离散涡方法[J].力学进展, 1985, 15(4):458-470. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ198504004.htm

    LING G C.Vortex flow around a circular cylinder motion and the discrete vortex method[J].Journal of Mechanics, 1985, 15(4):458-470(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ198504004.htm
    [3] 苑明顺.高雷诺数圆柱绕流的二维大涡模拟[J].水动力学研究与进展:A辑, 1992, 7(Suppl.):614-622. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ1992S1017.htm

    YUAN M S.High Reynolds number flow around a cylinder of 2-D large eddy simulation[J].Water Dynamics Research and Development:Series A, 1992, 7(Suppl.):614-622(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ1992S1017.htm
    [4] 王亚玲, 刘应中, 缪国平.圆柱绕流的三维数值模拟[J].上海交通大学学报, 2001, 35(10):1464-1469. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200104001020.htm

    WANG Y L, LIU Y Z, MIU G P.Three dimensional numerical simulation of viscous flow a round circular cylinder[J].Journal of Shanghai Jiaotong University, 2001, 35(10):1464-1469(in Chinese). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200104001020.htm
    [5] 刘应中, 缪国平.高等流体力学[M].上海:上海交通大学出版社, 2000.

    LIU Y Z, MIU G P.Higher fluid mechanics[M].Shanghai:Shanghai Jiao Tong University Press, 2000(in Chinese).
    [6] 易家训.流体力学[M].北京:高等教育学出版社, 1982.

    YI J X.Fluid mechanics[M].Beijing:Higher Education Press, 1982(in Chinese).
    [7] ESKINAZI S.Principles of fluid mechanics[M].Boston:Allyn and Bacon Inc., 1968.
    [8] SCHMIDT R, PANTANKAR S.Simulation boundary layer transition with low-reynolds number k-ε turbulence models:Part 2-An approach to improving the predictions[J].Journal of Tuebomachinery, 1991, 113(1):18-26. doi: 10.1115/1.2927732
    [9] VANCOILLIE G, DICK E.A turbulence model for the numerical simulation of the transition zone in a boundary layer[J].International Journal of Engineering Fluid Mechanics, 1988, 1(1):28-49. https://www.researchgate.net/publication/260974831_A_turbulence_model_for_the_numerical_simulation_of_the_transition_zone_in_a_boundary_layer
    [10] STEELANT J, DICK E.Modeling of laminar-turbulent transition for high freestream turbulence[J].Journal of Fluids Engineering, 2001, 123(1):22-30. doi: 10.1115/1.1340623
    [11] WALTERS K D, LEYLEK J H.Impact of film-cooling jets on turbine areogynamic losses[J].Journal of Turbomachinery, 2000, 122(3):537-545. doi: 10.1115/1.1303818
    [12] LANGTRY R B, MENTER F R.Transition modeling for general CFD applications in aeronautics[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit.Reston:AIAA, 2005.
    [13] MENTER F R, LANGTRY R B, LIKKI S R, et al.A correlation-based transition model using local variables-Part I:Model formulation[C]//49th International Gas Turbine and Aeroengine Congress and Exhibition.New York:ASME, 2006:413-422.
    [14] MENTER F R, LANGTRY R B, LIKKI S R, et al.A correlation-based transition model using local variables-Part II:Test cases and industrial applications[C]//49th International Gas Turbine and Aeroengine Congress and Exhibition.New York:ASME, 2006:423-434.
    [15] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering application[J].AIAA Journal, 1994, 32(8):1598-1605. doi: 10.2514/3.12149
    [16] CANTWELL B J.A flying hot wire study of the turbulent near wake of a circular cylinder at a Reynolds number of 14, 000[D].Pasadena:California Institute of Technology, 1976.
    [17] SCHEWE G.On the force fluctuations acting on a circular cylinder in cross flow from subcritical up to transcritical Reynolds numbers[J].Journal of Fluid Mechanics, 1983, 133(1):265-285. http://adsabs.harvard.edu/abs/1983JFM...133..265S
    [18] SQUIRES K D, KRISHNAN V, FORSYTHE J R.Prediction of the flow over a circular cylinder at high Reynolds number using detached-eddy simulation[J].Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10-11):1528-1536. doi: 10.1016/j.jweia.2008.02.053
    [19] ACHENBACH E.Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re=5×106[J].Journal of Fluid Mechanics, 1968, 34(4):625-639. doi: 10.1017/S0022112068002120
    [20] 凌国灿, 牛家玉, CHWANG A T.圆柱近尾迹流动转捩特征的数值研究[J].空气动力学报, 1997, 15(1):130-138. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX199701018.htm

    LING G C, ZHU J Y, CHWANG A T.Numerical studies of cylindrical near wake flow transition characteristics[J].Acta Aerodynamica Sinica, 1997, 15(1):130-138(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX199701018.htm
    [21] WALKER J D A, SMITH C R, CERRA A W, et al.The impact of a vortex ring on a wall[J].Journal of Fluid Mechanics, 1987, 181:99-140. doi: 10.1017/S0022112087002027
    [22] JONES G W, CINCOTTA J J, WALKER R W.Aerodynamic forces on a stationary and oscillating circular cylinder at high Reynolds numbers:NASA TR R-300[R].Washington, D.C.:NASA, 1969.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1147
  • HTML全文浏览量:  4
  • PDF下载量:  1070
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-26
  • 录用日期:  2016-03-04
  • 刊出日期:  2017-02-20

目录

    /

    返回文章
    返回
    常见问答