留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TBM液压管道抗振结构设计方法

宁海辉 张怀亮 瞿维 彭欢

宁海辉, 张怀亮, 瞿维, 等 . TBM液压管道抗振结构设计方法[J]. 北京航空航天大学学报, 2017, 43(2): 344-351. doi: 10.13700/j.bh.1001-5965.2016.0135
引用本文: 宁海辉, 张怀亮, 瞿维, 等 . TBM液压管道抗振结构设计方法[J]. 北京航空航天大学学报, 2017, 43(2): 344-351. doi: 10.13700/j.bh.1001-5965.2016.0135
NING Haihui, ZHANG Huailiang, QU Wei, et al. Design method of anti-vibration structure for TBM hydraulic pipe[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 344-351. doi: 10.13700/j.bh.1001-5965.2016.0135(in Chinese)
Citation: NING Haihui, ZHANG Huailiang, QU Wei, et al. Design method of anti-vibration structure for TBM hydraulic pipe[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 344-351. doi: 10.13700/j.bh.1001-5965.2016.0135(in Chinese)

TBM液压管道抗振结构设计方法

doi: 10.13700/j.bh.1001-5965.2016.0135
基金项目: 

国家“973”计划 2013CB035404

详细信息
    作者简介:

    宁海辉, 男, 硕士研究生。主要研究方向:液压系统动力学

    通讯作者:

    张怀亮, 男, 博士, 教授, 博士生导师。主要研究方向:液压系统动力学, E-mail:zhl2001@csu.edu.cn

  • 中图分类号: TH113

Design method of anti-vibration structure for TBM hydraulic pipe

Funds: 

National Basic Research Program of China 2013CB035404

More Information
  • 摘要:

    针对硬岩掘进机工作过程中产生的强烈振动影响管道的工作性能的问题,建立了基础振动下两端固定支撑输流管道横向振动的数学模型,运用Galerkin方法和等效弯矩法对管道最大应力进行了数值求解,并且用实验证实了数学模型的正确性。研究了基础振动参数对管道最大应力的影响规律,并根据最大应力判据条件得到了不同基础振动参数下管道工作的正常-失效区域,制定了以流量-压力-强振动参数为依据的管道抗振结构设计方法。结果表明:基础振动会引起液压管道应力剧增而导致其工作失效,新的设计方法能有效改善强振动环境下管道的工作性能。

     

  • 图 1  管道理论模型

    Figure 1.  Theoretical model of pipe

    图 2  2个典型时刻管道位移、弯矩和最大应力的分布

    Figure 2.  Displacement, bend moment and maximum stress distribution of pipe at two typical moments

    图 3  应力敏感截面上最大应力响应

    Figure 3.  Maximum stress response of stress sensitive section

    图 4  实验系统液压原理图

    1-油源开关;2-变量泵;3,13,17-单向阀;4-调速阀;5,12-电磁溢流阀;6-换向阀;7,15-电磁换向阀;8-液控单向阀;9-动力液压缸;10-惯性负载;11-加载液压缸;14-电磁减压阀;16-溢流阀;18-定量泵;19-过滤器。

    Figure 4.  Hydraulic schematic diagram of experimental system

    图 5  应变测试结果

    Figure 5.  Strain test results

    图 6  应力仿真曲线及与实验结果局部对比图

    Figure 6.  Local contrast chart of stress simulation curves and experimental results

    图 7  最大应力随基础振动频率变化规律

    Figure 7.  Change rules of maximum stress with foundation vibration frequency

    图 8  不同固支间距下管道失效区域图

    Figure 8.  Area chart of pipe failure under different support spans

    图 9  强振动环境下抗振结构设计流程图

    Figure 9.  Design flow chart of anti-vibration structure in strong vibration environment

    图 10  不同固支间距下管道最大应力

    Figure 10.  Maximum pipe stress underdifferent support spans

    图 11  不同基础振动参数下的失效区域

    Figure 11.  Failure area of different foundationvibration parameters

    图 12  调整内径后的失效区域图

    Figure 12.  Failure area chart after innerdiameter's optimization

    图 13  优化后应力敏感截面上最大应力响应

    Figure 13.  Maximum stress response of stresssensitive section ofter optimizing

    表  1  系统参数设置

    Table  1.   System parameter setting

    参数 数值
    壁厚/m 0.004
    管道内径/m 0.05
    管道弹性模量/GPa 201
    管道固支间距/m 2
    管材密度/(kg·m-3) 7 985
    管材泊松比 0.3
    流体平均流速/(m·s-1) 3
    流体密度/(kg·m-3) 890
    下载: 导出CSV
  • [1] KOYAMA Y.Present status and technology of shield tunneling method in Japan[J].Tunnelling and Underground Space Technology, 2003, 18(2):145-159. http://www.ingentaconnect.com/content/els/08867798/2003/00000018/00000002/art00040
    [2] LI X H, YU H B, YUAN M Z, et al.Study on the linear dynamic model of shield TBM cutterhead driving system[C]//IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society.Piscataway, NJ:IEEE Press, 2011:3864-3871.
    [3] 吴晓南, 舒浩纹, 昝林峰, 等.试压工况下盾构隧道内输气管道应力分析[J].天然气工业, 2013, 33(3):73-77. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201303020.htm

    WU X N, SHU H W, ZAN L F, et al.Stress analysis of gas pipeline in tunnels on pressure testing condition[J].Natural Gas Industry, 2013, 33(3):73-77(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201303020.htm
    [4] XIA L, HUANG K, HONG F L, et al.Stress analysis of suspended gas pipeline[J].Applied Mechanics and Materials, 2013, 448(1):1359-1362. https://www.researchgate.net/publication/269383367_Stress_Analysis_of_Suspended_Gas_Pipeline
    [5] XIAO N W, SHI J W, HONG F L, et al.Analysis of hot oil pipe-line stress influencing factors[J].Advanced Materials Research, 2014, 887(1):899-902. http://www.scientific.net/AMR.887-888.899
    [6] 耿艳辉, 詹晨菲.生产线液压系统长大管道设计[J].流体传动与控制, 2012, 52(3):21-24. http://www.cnki.com.cn/Article/CJFDTOTAL-LTCD201203007.htm

    GENG Y H, ZHAN C F.Design of long and large pipeline of hydraulic system used in product line[J].Fluid Power Transmission and Control, 2012, 52(3):21-24(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-LTCD201203007.htm
    [7] 朱博.工程机械液压系统管路设计及装配原则[J].建筑机械, 2011(2):94-97. http://www.cnki.com.cn/Article/CJFDTOTAL-JZJX201103024.htm

    ZHU B.Principle of pipeline design and assembly for hydraulic system of construction machinery[J].Construction Machinery, 2011(2):94-97(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JZJX201103024.htm
    [8] SVEDEMAN S J, ARNOLD K E.Criteria for sizing multiphase flowlines for erosive/corrosive service[J].SPE Production & Facilities, 1996, 9(1):74-80. https://www.researchgate.net/publication/250090044_Criteria_for_Sizing_Multiphase_Flowlines_for_ErosiveCorrosive_Service
    [9] NAYYAR M L.ASME code for pressure piping, B31:ASME B31.1b-2009[S].New York:ASME, 2009:6-10.
    [10] JIN J D, ZOU G S.Bifurcations and chaotic motions in the autonomous system of a restrained pipe conveying fluid[J].Journal of Sound and Vibration, 2003, 260(5):783-805. doi: 10.1016/S0022-460X(02)00982-3
    [11] SEMLER C, LI G X, PAIDOUSSIS M P.The nonlinear equations of motion of pipes conveying fluid[J].Journal of Sound and Vibration, 1994, 169(5):577-599. doi: 10.1006/jsvi.1994.1035
    [12] 邹光胜, 金基铎, 闻邦椿.Melnikov方法在输流管混沌运动研究中的应用[J].力学与实践, 2004, 26(2):29-32. http://www.cnki.com.cn/Article/CJFDTOTAL-LXYS200402007.htm

    ZOU G S, JIN J D, WEN B C.Application of Melnikov method in the study of chaotic motions of pipe conveying fluid[J].Mechanics in Engineering, 2004, 26(2):29-32(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-LXYS200402007.htm
    [13] PAIDOUSSIS M P, LI G X, RAND R H.Chaotic motions of a constrained pipe conveying fluid:Comparison between simulation analysis and experiment[J].ASME Journal of Applied Mechanics, 1991, 58(2):559-565. doi: 10.1115/1.2897220
    [14] STOSIAK M.Vibration insulation of hydraulic system control components[J].Archives of Civil and Mechanical Engineering, 2011, 11(1):237-248. doi: 10.1016/S1644-9665(12)60186-1
    [15] 陈炳瑞, 冯夏庭, 曾雄辉, 等.深埋隧洞TBM掘进微震实时监测与特征分析[J].岩石力学与工程学报, 2011, 30(2):275-283. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102009.htm

    CHEN B R, FENG X T, ZENG X H, et al.Real-time microseismic monitoring and its characteristic analysis during TBM tunneling in deep-buried tunnel[J].Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2):275-283(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102009.htm
    [16] 苏华友.双护盾TBM开挖深埋隧洞围岩稳定性研究[D].成都:西南交通大学, 2009:36-40.

    SU H Y.Surrounding rock stability study of double-shield TBM during tunneling in deep-buried tunnel[D].Chengdu:Southwest Jiaotong University, 2009:36-40(in Chinese).
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  532
  • HTML全文浏览量:  5
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-23
  • 录用日期:  2016-05-13
  • 刊出日期:  2017-02-20

目录

    /

    返回文章
    返回
    常见问答