留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航行器低速斜入水运动规律

李永利 冯金富 齐铎 杨健 胡俊华 徐保伟

李永利, 冯金富, 齐铎, 等 . 航行器低速斜入水运动规律[J]. 北京航空航天大学学报, 2016, 42(12): 2698-2708. doi: 10.13700/j.bh.1001-5965.2016.0153
引用本文: 李永利, 冯金富, 齐铎, 等 . 航行器低速斜入水运动规律[J]. 北京航空航天大学学报, 2016, 42(12): 2698-2708. doi: 10.13700/j.bh.1001-5965.2016.0153
LI Yongli, FENG Jinfu, QI Duo, et al. Movement rule of a vehicle obliquely water-entry at low speed[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2698-2708. doi: 10.13700/j.bh.1001-5965.2016.0153(in Chinese)
Citation: LI Yongli, FENG Jinfu, QI Duo, et al. Movement rule of a vehicle obliquely water-entry at low speed[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2698-2708. doi: 10.13700/j.bh.1001-5965.2016.0153(in Chinese)

航行器低速斜入水运动规律

doi: 10.13700/j.bh.1001-5965.2016.0153
基金项目: 

国家自然科学基金 51541905

国家自然科学基金 61502534

详细信息
    作者简介:

    李永利, 男, 博士研究生。主要研究方向:新概念武器设计与仿真。Tel.:029-84787514-602, E-mail:672719405@qq.com

    通讯作者:

    冯金富, 男, 博士, 教授, 博士生导师。主要研究方向:新概念武器设计与仿真。Tel.:029-84787514-601, E-mail:wcsfjf@163.com

  • 中图分类号: TJ76

Movement rule of a vehicle obliquely water-entry at low speed

Funds: 

National Natural Science Foundation of China 51541905

National Natural Science Foundation of China 61502534

More Information
  • 摘要:

    针对介质跨越航行器控制困难的问题,提出一种空中控制水下非控的单一控制策略;为了分析航行器非控状态下斜入水运动的规律,构建了航行器低速入水动力学模型,并分别使用数值仿真方法和理论模型求解方法进行同一条件下的航行体入水运动仿真,通过对2种方法的仿真结果对比验证本文所构建航行体斜入水动力学模型的正确性。利用构建的入水动力学模型,分别对不同初始速度、角度、攻角条件下的入水过程进行了运动状态仿真并分析,得出了航行体在入水运动过程中的姿态位置变化规律。此入水规律将指导介质跨越航行器后续的水下航行、进而出水的一系列研究。

     

  • 图 1  航行器物理模型示意图

    Figure 1.  Schematic diagram of vehicle physical model

    图 2  航行器入水作用力分析

    Figure 2.  Force analysis of vehicle water-entry

    图 3  CFD仿真得到的黏性流体动力系数与攻角、速度的关系

    Figure 3.  Relationship between dynamic coefficients of simulation by CFD and attack angle and speed

    图 4  航行器入水过程CFD仿真结果

    Figure 4.  Results of vehicle water-entry process simulated by CFD

    图 5  质心运动轨迹变化对比

    Figure 5.  Comparison of centroid trajectory

    图 6  倾斜角度对比

    Figure 6.  Comparison of inclination angle

    图 7  轴向位移对比

    Figure 7.  Comparison of axial displacement

    图 8  径向位移对比

    Figure 8.  Comparison of radial displacement

    图 9  速度对比

    Figure 9.  Comparison of velocity

    图 10  转动角速度对比

    Figure 10.  Comparison of rotational angular velocity

    图 11  初始入水速度对质心运动轨迹的变化

    Figure 11.  Change of centroid trajectory under different initial water-entry velocities

    图 12  初始入水速度对倾斜角度的变化

    Figure 12.  Change of inclination angle under different initial water-entry velocities

    图 13  初始入水速度对攻角的变化

    Figure 13.  Change of attack angle under different initial water-entry velocities

    图 14  初始入水速度对转动角速度的变化

    Figure 14.  Change of rotational angular velocity under different initial water-entry velocities

    图 15  初始入水速度对轴向速度的变化

    Figure 15.  Change of axial velocity under different initial water-entry velocities

    图 16  初始入水速度对径向速度的变化

    Figure 16.  Change of radial velocity under different initial water-entry velocities

    图 17  初始入水角度对质心运动轨迹的变化

    Figure 17.  Change of centroid trajectory under different initial water-entry angles

    图 18  初始入水角度对倾斜角度的变化

    Figure 18.  Change of inclination angle under different initial water-entry angles

    图 19  初始入水角度对攻角的变化

    Figure 19.  Change of attack angle under different initial water-entry angles

    图 20  初始入水角度对转动角速度的变化

    Figure 20.  Change of rotational angular velocity under different initial water-entry angles

    图 21  初始入水角度对轴向速度的变化

    Figure 21.  Change of axial velocity under different initial water-entry angles

    图 22  初始入水角度对径向速度的变化

    Figure 22.  Change of radial velocity under different initial water-entry angles

    图 23  初始攻角对质心运动轨迹的变化

    Figure 23.  Change of centroid trajectory under different initial attack angles

    图 24  初始攻角对倾斜角度的变化

    Figure 24.  Change of inclination angle under different initial attack angles

    图 25  初始攻角对攻角的变化

    Figure 25.  Change of attack angle under different initial attack angles

    图 26  初始攻角对转动角速度的变化

    Figure 26.  Change of rotational angular velocity under different initial attack angles

    图 27  初始攻角对轴向速度的变化

    Figure 27.  Change of axial velocity under different initial attack angles

    图 28  初始攻角对径向速度的变化

    Figure 28.  Change of radial velocity under different initial attack angles

  • [1] EASTGATE J, GODDARD R.Submersible aircraft concept design study[C]//11th International Conference on Fast Sea Transportation, FAST 2011.Alexandria:American Society of Naval Engineers, 2011:813-820.
    [2] KATHRYN W.Submersible aircraft concept design study-Amendment1:NSWCCD-CISD-2011/015[R].Carderock, MD:Naval Surface Warfare Center Carderock Division, 2011.
    [3] 严忠汉.试论鱼雷入水问题[J].中国造船, 2002, 43(3):88-93.

    YAN Z H.A brief neview of water-entry problems for torpedo[J].Ship Building of China, 2002, 43(3):88-93(in Chinese).
    [4] WAUGH J G, STUBSTAD G W.Hydroballistics modeling:AD A 007529[R].Washington, D.C.:NASA, 1975.
    [5] MAY A.Water-entry & cavity running behavior of missiles:AD A 020429[R].Washington, D.C.:NASA, 1975.
    [6] 何春涛, 王聪, 何乾坤, 等.圆柱体低俗入水空泡试验研究[J].物理学报, 2012, 61(13):134701. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201213043.htm

    HE C T, WANG C, HE Q K, et al.Low speed water-entry of cylindrical projictile[J].Acta Physica Sinica, 2012, 61(13):134701(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201213043.htm
    [7] 何春涛, 王聪, 魏英杰, 等.圆柱体垂直入水空泡形态试验[J].北京航空航天大学学报, 2012, 38(11):1542-1546. http://bhxb.buaa.edu.cn/CN/abstract/abstract12461.shtml

    HE C T, WANG C, WEI Y J, et al.Vertical water entry cavity of cylinder body[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(11):1542-1546(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12461.shtml
    [8] 马庆鹏, 何春涛, 王聪, 等.球体垂直入水空泡实验研究[J].爆炸与冲击, 2014, 34(2):174-180. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201402008.htm

    MA Q P, HE C T, WANG C, et al.Experiment investigation on vertical water-entry cavity of sphere[J].Explosion and Shock Waves, 2014, 34(2):174-180(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201402008.htm
    [9] 胡青青.不同倾角下钝体入水后的超空泡流动的实验观察及数值计算[D].杭州:浙江理工大学, 2014:32-35. http://cdmd.cnki.com.cn/Article/CDMD-10338-1014226386.htm

    HU Q Q.Experimental observation and numerical calculation of supercavity flow of blunt body under different inlination angle into the water[D].Hangzhou:Zhejiang Sci-Tech University, 2014:32-35(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10338-1014226386.htm
    [10] 张伟, 郭子涛, 肖新科, 等.弹体高速入水特性实验研究[J].爆炸与冲击, 2011, 31(6):579-584. http://www.cnki.com.cn/Article/CJFDTOTAL-KJZW201419138.htm

    ZHANG W, GUO Z T, XIAO X K, et al.Experimental investigations on behaviors of projectile high-speed water entry[J].Explosion and Shock Waves, 2011, 31(6):579-584(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KJZW201419138.htm
    [11] 顾建农, 张志宏, 王冲, 等.旋转弹头水平入水空泡及弹道实验研究[J].兵工学报, 2012, 33(5):540-544. http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201205005.htm

    GU J N, ZHANG Z H, WANG C, et al.Experimental research for cavity and ballistics of a rotating bullet entraining water levelly[J].Acta Armamentarii, 2012, 33(5):540-544(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201205005.htm
    [12] 陈宇翔, 郜冶, 刘乾坤.应用VOF方法的水平圆柱入水数值模拟[J].哈尔滨工程大学学报, 2011, 32(11):1439-1442. http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201111007.htm

    CHEN Y X, GAO Y, LIU Q K.Numerical simulation of water-entry in a horizontal circular cylinder using the volume of fluid (VOF) method[J].Journal of Harbin Engineering University, 2011, 32(11):1439-1442(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201111007.htm
    [13] 何春涛, 王聪, 闵景新, 等.回转体匀速垂直入水早期空泡数值模拟研究[J].工程力学, 2012, 29(4):237-243. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201204038.htm

    HE C T, WANG C, MIN J X, et al.Numerical simulation of early air-cavity of cylinder cone with vertical water-entry[J].Engineering Mechanics, 2012, 29(4):237-243(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201204038.htm
    [14] 魏照宇, 石秀华, 王银涛, 等.水下航行器高速斜入水冲击的探索仿真研究[J].西北工业大学学报, 2010, 28(5):718-723. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201005018.htm

    WEI Z Y, SHI X H, WANG Y T, et al.Exploring high-speed oblique water entry impact of an underwater vehicle[J].Journal of Northwestern Polytechnical University, 2010, 28(5):718-723(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201005018.htm
    [15] 王永虎, 石秀华.空投鱼雷斜入水初始弹道数值分析[J].弹道学报, 2012, 24(2):92-95. http://www.cnki.com.cn/Article/CJFDTOTAL-DDXB201202023.htm

    WANG Y H, SHI X H.Numerical analysis for initial hydroballistics of airborne missile during oblique water-entry impact[J].Journal of Ballistics, 2012, 24(2):92-95(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DDXB201202023.htm
    [16] PARK M S, JUNG Y R.Numerical study of impact force and ricochet behavior of high speed water-entry bodies[J].Computers & Fluids, 2003, 32(7):939-951. http://www.doc88.com/p-391307060593.html
    [17] 严卫生.鱼雷航行力学[M].西安:西北工业大学出版社, 2005:26.

    YAN W S.Torpedo mechanics[M].Xi'an:Northwestern Polytechnical University Press, 2005:26(in Chinese).
    [18] 廖剑晖, 由小川, 吕海波, 等.发展时变附加质量方法模拟飞行器出水过程[J].工程力学, 2012, 29(4):202-209. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201204033.htm

    LIAO J H, YOU X C, LV H B, et al.Development of a time-varying added mass method in the simulations of the water-exit process of underwater vehicles[J].Engineering Mechanics, 2012, 29(4):202-209(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201204033.htm
    [19] 罗格维诺维奇·T·B.自由边界流动的水动力学[M].施红辉, 译.上海:上海交通大学出版社, 2012:129-131.ЛОГВИНООВЧ Г В.

    Hydrodynamics of free-boundary flows[M].SHI H H, translated.Shanghai:Shanghai Jiao Tong University Press, 2012:129-131(in Chinese).
    [20] WILSON M B, KELLEY T R.Low froude number hydrodynamic performance of a flat plate hydrofoil[J].Drag Forces, 1976:77. https://www.researchgate.net/publication/252773764_Low_Froude_number_hydrodynamic_performance_of_a_flat_plate_hydrofoil
    [21] 刘曜.波浪对运载器出水姿态角的影响[J].舰船科学技术, 2005, 27(3):32-34. http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX200503009.htm

    LIU Y.Wave effect on a submerged missile capsule traveling near-surface[J].Ship Science and Technology, 2005, 27(3):32-34(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX200503009.htm
  • 加载中
图(28)
计量
  • 文章访问数:  548
  • HTML全文浏览量:  2
  • PDF下载量:  546
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-02
  • 录用日期:  2016-06-02
  • 刊出日期:  2017-12-20

目录

    /

    返回文章
    返回
    常见问答