留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型三阶TVD限制器性能分析

赵雅甜 阎超 孙迪 屈峰

赵雅甜, 阎超, 孙迪, 等 . 新型三阶TVD限制器性能分析[J]. 北京航空航天大学学报, 2017, 43(4): 800-805. doi: 10.13700/j.bh.1001-5965.2016.0266
引用本文: 赵雅甜, 阎超, 孙迪, 等 . 新型三阶TVD限制器性能分析[J]. 北京航空航天大学学报, 2017, 43(4): 800-805. doi: 10.13700/j.bh.1001-5965.2016.0266
ZHAO Yatian, YAN Chao, SUN Di, et al. Performance analysis of a new-type third-order TVD limiter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 800-805. doi: 10.13700/j.bh.1001-5965.2016.0266(in Chinese)
Citation: ZHAO Yatian, YAN Chao, SUN Di, et al. Performance analysis of a new-type third-order TVD limiter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 800-805. doi: 10.13700/j.bh.1001-5965.2016.0266(in Chinese)

新型三阶TVD限制器性能分析

doi: 10.13700/j.bh.1001-5965.2016.0266
基金项目: 

国家自然科学基金 11402016

详细信息
    作者简介:

    赵雅甜, 女, 硕士研究生。主要研究方向:计算空气动力学

    阎超, 男, 博士, 教授, 博士生导师。主要研究方向:计算空气动力学

    通讯作者:

    阎超, E-mail:yanchao@buaa.edu.cn

  • 中图分类号: V221+.3;TB553

Performance analysis of a new-type third-order TVD limiter

Funds: 

National Natural Science Foundation of China 11402016

More Information
  • 摘要:

    在计算流体力学(CFD)方法中,限制技术是影响计算精度和计算稳定性的重要因素,目前应用较广的经典二阶总变差衰减(TVD)限制器虽能较好地满足计算要求,但性能差异大且分辨率和耗散的性能间并未得到良好权衡。对一种新型的三阶TVD插值限制器(T-3限制器)进行了研究并将其与3种经典限制器进行对比。首先通过一维黎曼问题,得出T-3限制器兼顾较高间断分辨率和良好稳定性的特点;接着通过高超声速双锥绕流和X-33外形飞行器的数值实验,得到T-3限制器具有刻画复杂流动的能力以及较优的气动热计算性能。

     

  • 图 1  密度分布曲线

    Figure 1.  Density distribution curves

    图 2  流场结构示意图[14]

    Figure 2.  Schematic diagram of structure of flow field[14]

    图 3  对称面等马赫线分布

    Figure 3.  Mach contours in symmetry plane

    图 4  壁面压强沿母线分布曲线

    Figure 4.  Distribution curves of wall surface pressure along generating line

    图 5  40°迎角下对称面等马赫线图和壁面压强云图

    Figure 5.  Mach contours in symmetry plane and wall surface pressure contours at α=40°

    图 6  40°迎角下热流云图

    Figure 6.  Contours of heat transfer at α=40°

    图 7  迎风区子午线热流分布与实验值的对比

    Figure 7.  Comparison between windward centerline heat flow distribution and experimental data

    表  1  分离点、再附点、分离区长度的计算结果

    Table  1.   Calculated separation position, reattachment position and separation zone length

    限制器 x/L
    分离点 再附点 分离区长度
    minmod 0.597 5 1.103 5 0.506
    double minmod 0.565 8 1.164 1 0.598
    superbee 0.505 0 1.151 1 0.646
    T-3 0.449 1 1.095 0 0.646
    下载: 导出CSV

    表  2  壁面压强峰值计算结果

    Table  2.   Calculated results of wall surface pressure peak

    限制器 峰值位置 (x/L) 位置误差/% 压强峰值 (p/p) 峰值误差/%
    实验 1.424 5 104.698
    minmod 1.358 5 4.633 0 94.307 9.925
    double minmod 1.429 6 0.358 0 94.689 9.560
    superbee 1.437 5 0.913 0 107.886 3.045
    T-3 1.498 5 1.825 0 102.831 1.783
    下载: 导出CSV
  • [1] HARTEN A.High resolution schemes for hyperbolic conservation laws[J].Journal of Computational Physics, 1983, 49(3):357-393. doi: 10.1016/0021-9991(83)90136-5
    [2] LEER B V.Towards the ultimate conservative difference scheme V:A second-order sequal to Godunov's method[J].Journal of Computational Physics, 1979, 32(1):101-136. doi: 10.1016/0021-9991(79)90145-1
    [3] HARTEN A, ENGQUIST B, OSHER S, et al.Unifomrly high-order accurate essentially non-oscillatory schemes[J].Journal of Computational Physics, 1987, 71(2):231-303. doi: 10.1016/0021-9991(87)90031-3
    [4] LIU X D, OSHER S, TONY C.Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics, 1994, 115(1):200-212. doi: 10.1006/jcph.1994.1187
    [5] SWEBY P K.High resolution schemes using flux limiters for hyperbolic conservational laws[J].SIAM Journal of Numerical Analysis, 1984, 21(5):995-1011. doi: 10.1137/0721062
    [6] VENKATAKRISHMAN V.Convergence to steady state solutions of the Euler equations on unstructured grids with limiters[J].Journal of Computational Physics, 1995, 118(1):120-130. doi: 10.1006/jcph.1995.1084
    [7] 屈峰, 阎超, 于剑, 等.高精度激波捕捉格式的性能分析[J].北京航空航天大学学报, 2014, 40(8):1085-1089. http://bhxb.buaa.edu.cn/CN/abstract/abstract13000.shtml

    QU F, YAN C, YU J, et al.Assessment of shock capturing methods for numerical simulations of compressible turbulence with shock waves[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(8):1085-1089(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13000.shtml
    [8] YEE H C, KLOPFER G H, MINTAGNE J L.High resolution shock capturing schemes for inviscid and viscous hypersonic flows[J].Journal Computational Physics, 1990, 83(1):31-61. https://www.researchgate.net/publication/222485266_High-resolution_shock-capturing_schemes_for_inviscid_and_viscous_hypersonic_flows
    [9] SPEKREIJSE S.Multigrid solution of monotone second order discretization of hypersonic conservation laws[J].Mathematics of Computational, 1987, 49(179):135-155. doi: 10.1090/S0025-5718-1987-0890258-9
    [10] YOON S H, KIM K H, KIM C.Multi-dimensional limiting process for the three-dimensional flow physics analyses[J].Journal of Computational Physics, 2008, 227(12):6001-6043. doi: 10.1016/j.jcp.2008.02.012
    [11] KIM K H, KIM C.Accurate, efficient and monotonic numetical methods for multi-dimensional compressible flows, Part Ⅱ:Multi-dimensional limiting process[J].Journal of Computational Physics, 2005, 208(2):570-615. doi: 10.1016/j.jcp.2005.02.022
    [12] 阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社, 2006:123-127.

    YAN C.Computational fluid dynamic's methods and applications[M].Beijing:Beihang University Press, 2006:123-127(in Chinese).
    [13] 孙迪, 阎超, 于剑, 等.高精度多维限制器的性能分析[J].北京航空航天大学学报, 2015, 41(3):437-442. http://bhxb.buaa.edu.cn/CN/abstract/abstract13185.shtml

    SUN D, YAN C, YU J, et al.Performance analysis of high accurate multi-dimensional limiting process[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3):437-442(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13185.shtml
    [14] WRIGHT M J, SINHA K, OLEJNICZAK J, et al.Numerical and experimental investigation of double-cone shock interactions[J].AIAA Journal, 2000, 38(12):2268-2276. doi: 10.2514/2.918
    [15] BRIAN R H, THOMAS J H, SCOTT A B, et al.X-33 computational aeroheating predictions and comparisons with experimental data[J].Journal of Spacecraft and Rockets, 1999, 38(5):658-669. https://www.researchgate.net/publication/2291000_X-33_Computational_Aeroheating_Predictions_and_Comparisons_with_Experimental_Data
    [16] BERRY S A, HORVATH T J, HOLLIS B R, et al.X-33 hypersonic boundary-layer transition[J].Journal of Spacecraft and Rockets, 2001, 38(5):646-657. doi: 10.2514/2.3750
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  564
  • HTML全文浏览量:  3
  • PDF下载量:  631
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-06
  • 录用日期:  2016-07-22
  • 刊出日期:  2017-04-20

目录

    /

    返回文章
    返回
    常见问答