留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

控制力矩陀螺驱动空间机器人的角动量平衡控制

冯骁 贾英宏 徐世杰

冯骁, 贾英宏, 徐世杰等 . 控制力矩陀螺驱动空间机器人的角动量平衡控制[J]. 北京航空航天大学学报, 2017, 43(6): 1191-1198. doi: 10.13700/j.bh.1001-5965.2016.0427
引用本文: 冯骁, 贾英宏, 徐世杰等 . 控制力矩陀螺驱动空间机器人的角动量平衡控制[J]. 北京航空航天大学学报, 2017, 43(6): 1191-1198. doi: 10.13700/j.bh.1001-5965.2016.0427
FENG Xiao, JIA Yinghong, XU Shijieet al. Momentum equalization control of space robot with control moment gyroscopes for joint actuation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1191-1198. doi: 10.13700/j.bh.1001-5965.2016.0427(in Chinese)
Citation: FENG Xiao, JIA Yinghong, XU Shijieet al. Momentum equalization control of space robot with control moment gyroscopes for joint actuation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1191-1198. doi: 10.13700/j.bh.1001-5965.2016.0427(in Chinese)

控制力矩陀螺驱动空间机器人的角动量平衡控制

doi: 10.13700/j.bh.1001-5965.2016.0427
基金项目: 

国家自然科学基金 11272027

详细信息
    作者简介:

    冯骁, 男, 博士研究生。主要研究方向:多体航天器动力学与控制

    贾英宏, 男, 博士, 副教授, 硕士生导师。主要研究方向:空间机器人/多体系统动力学与控制、航天器姿态动力学与控制以及滑模控制

    徐世杰, 男, 博士, 教授, 博士生导师。主要研究方向:深空探测中的非线性轨道动力学与控制、航天器动力学与控制, 以及鲁棒控制理论与应用

    通讯作者:

    贾英宏, E-mail:jia_yingh@163.com

  • 中图分类号: TP242

Momentum equalization control of space robot with control moment gyroscopes for joint actuation

Funds: 

National Natural Science Foundation of China 11272027

More Information
  • 摘要:

    针对Ⅴ构型控制力矩陀螺(CMGs)驱动的冗余空间机器人的CMGs角动量饱和问题,提出一种角动量平衡控制方法。该方法从平衡使用机械臂各臂杆CMGs角动量的思想出发,定义了角动量平衡指标,并使用加速度分解技术和逆动力学方法设计了角动量平衡控制器。该控制器可在保证机械臂跟踪工作空间轨迹的同时,利用机械臂的空转运动使得角动量平衡指标尽量减小,即各臂CMGs的角动量使用趋于平均,从而降低某些臂杆的CMGs先行饱和的可能性,充分利用CMGs的控制能力。基于平面三自由度冗余机械臂的数值仿真结果验证了所设计的控制器的有效性。

     

  • 图 2  Ⅴ构型控制力矩陀螺示意图

    Figure 2.  Schematic diagram of CMGs in scissored-pair configuration

    图 1  控制力矩陀螺驱动的冗余机械臂示意图

    Figure 1.  Schematic diagram of redundant manipulator with CMGs for joint actuation

    图 3  数值仿真中使用的机器人

    Figure 3.  Robot used in numerical simulation

    图 4  机械臂运动过程

    Figure 4.  Manipulator motion

    图 5  末端作用器跟踪误差

    Figure 5.  End-effector tracking error

    图 6  末端作用器跟踪误差变化率

    Figure 6.  Change rate of end-effector tracking error

    图 7  归一化角动量

    Figure 7.  Normalized angular momentum

    图 8  角动量平衡指标

    Figure 8.  Angular momentum equalization index

    表  1  安装参数

    Table  1.   Installation parameters

    臂杆编号 安装位置/m 安装方向
    1 [0 0 0]T 单位阵
    2 [1 0 0]T 单位阵
    3 [1 0 0]T 单位阵
    下载: 导出CSV

    表  2  惯性参数

    Table  2.   Inertial parameters

    臂杆编号 质量/kg 静矩/(kg·m) 惯量/(kg·m2)
    1 25 [12.5 0 0]T [0.0313 8.349 8.349]
    2 25 [12.5 0 0]T [0.0313 8.349 8.349]
    3 25 [12.5 0 0]T [0.0313 8.349 8.349]
    下载: 导出CSV

    表  3  角动量容量

    Table  3.   Angular momentum capacities

    臂杆编号 角动量容量/(N·m·s)
    1 5
    2 5
    3 5
    下载: 导出CSV
  • [1] FLORES-ABAD A, MA O, PHAM K, et al.A review of space robotics technologies for on-orbit servicing[J].Progress in Aerospace Sciences, 2014, 68:1-26. doi: 10.1016/j.paerosci.2014.03.002
    [2] XU W, LIANG B, XU Y.Survey of modeling, planning, and ground verification of space robotic systems[J].Acta Astronautica, 2011, 68(11):1629-1649. https://www.researchgate.net/publication/251506854_Survey_of_modeling_planning_and_ground_verification_of_space_robotic_systems
    [3] VAFA Z.On the dynamics of space manipulators using the virtual manipulator, with applications to path planning[J].The Journal of the Astronautical Sciences, 1990, 38(4):441-472. https://www.researchgate.net/publication/4699146_On_the_Dynamics_of_Space_Manipulators_Using_the_Virtual_Manipulator_with_Applications_to_Path_Planning
    [4] TORRES M A, DUBOWSKY S.Minimizing spacecraft attitude disturbances in space manipulator systems[J].Journal of Guidance, Control, and Dynamics, 1992, 15(4):1010-1017. doi: 10.2514/3.20936
    [5] YOSHIDA K, HASHIZUME K, ABIKO S.Zero reaction maneuver:Flight validation with ETS-Ⅶ space robot and extension to kinematically redundant arm[C]//IEEE International Conference on Robotics and Automation, 2001 ICRA.Piscataway, NJ:IEEE Press, 2001, 1:441-446.
    [6] NENCHEV D N.Reaction null space of a multibody system with applications in robotics[J].Mechanical Sciences, 2013, 4(1):97-112. doi: 10.5194/ms-4-97-2013
    [7] PECK M, PALUSZEK M, THOMAS S, et al.Control-moment gyroscopes for joint actuation:A new paradigm in space robotics[C]//1st Space Exploration Conference:Continuing the Voyage of Discovery, American Institute of Aeronautics and Astronautics Inc.Reston:AIAA, 2005, 1:204-233.
    [8] PECK M A.Low-power, high-agility space robotics[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston:AIAA, 2005:1-12.
    [9] OSUKA K, YOSHIDA K, ONO T.New design concept of space manipulator:A proposal of torque-unit manipulator[C]//Proceedings of the 33rd IEEE Conference on Decision and Control.Piscataway, NJ:IEEE Press, 1994, 2:1823-1825.
    [10] HOKAMOTO S.Torque unit manipulator driven by control moment gyros[J].Advances in the Astronautical Sciences, 1997, 96:865-876. https://www.researchgate.net/publication/271412630_Torque-Unit-Manipulator_Driven_by_Control_Moment_Gyros
    [11] CARPENTER M D, PECK M A.Reducing base reactions with gyroscopic actuation of space-robotic systems[J].IEEE Transactions on Robotics, 2009, 25(6):1262-1270. doi: 10.1109/TRO.2009.2032953
    [12] CARPENTER M D, PECK M A.Minimum-power robotic maneuvering using control-moment gyroscopes[C]//AIAA Guidance, Navigation, and Control Conference 2007.Reston:AIAA, 2007:210-222.
    [13] CARPENTER M D, PECK M A.Power-optimal steering of a space robotic system driven by control-moment gyroscopes[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston:AIAA, 2008.
    [14] BROWN D.Control moment gyros as space-robotics actuators[C]//AIAA Guidance, Navigation and Control Conference and Exhibit.Reston:AIAA, 2008.
    [15] BROWN D, PECK M.Energetics of control moment gyroscopes as joint actuators[J].Journal of Guidance, Control, and Dynamics, 2009, 32(6):1871-1883. doi: 10.2514/1.42313
    [16] 贾英宏, 赵楠, 徐世杰.控制力矩陀螺驱动的空间机器人轨迹跟踪控制[J].北京航空航天大学学报, 2014, 41(3):285-291. http://bhxb.buaa.edu.cn/CN/abstract/abstract12863.shtml

    JIA Y H, ZHAO N, XU S J.Trajectory tracking control of space robot actuated by control moment gyroscopes[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 41(3):285-291(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12863.shtml
    [17] 赵楠, 贾英宏, 徐世杰.无反作用力矩空间机器人轨迹跟踪控制[J].中国空间科学技术, 2014, 34(2):13-21. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201402003.htm

    ZHAO N, JIA Y H, XU S J.Trajectory tracking control of a reactionless space robot[J].Chinese Space Science and Technology, 2014, 34(2):13-21(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201402003.htm
    [18] SICILIANO B, SCIAVICCO L, VILLANI L, et al.Robotics:Modelling, planning and control[M].Berlin:Springer Science & Business Media, 2010:305, 348.
    [19] KANE T R, LEVINSON D A.Dynamics, theory and applications[M].New York:McGraw Hill, 1985:106, 158-159.
    [20] 胡权, 贾英宏, 徐世杰.多体系统动力学Kane方法的改进[J].力学学报, 2011, 43(5):968-972. doi: 10.6052/0459-1879-2011-5-lxxb2010-856

    HU Q, JIA Y H, XU S J.An improved Kane's method for multibody dynamics[J].Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5):968-972(in Chinese). doi: 10.6052/0459-1879-2011-5-lxxb2010-856
    [21] JIA Y H, XU S J.Spacecraft attitude tracking and energy storage using flywheels[J].Chinese Journal of Aeronautics, 2005, 18(1):1-7. doi: 10.1016/S1000-9361(11)60274-4
    [22] YOSHIKAWA T. Analysis and control of robot manipulators with redundancy[C]//Robotics Research:The First International Symposium.Cambridge, MA:MIT Press, 1984:735-747.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  703
  • HTML全文浏览量:  2
  • PDF下载量:  553
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-20
  • 录用日期:  2016-09-02
  • 刊出日期:  2017-06-20

目录

    /

    返回文章
    返回
    常见问答