留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界层流翼型优化设计策略

邢宇 罗东明 余雄庆

邢宇, 罗东明, 余雄庆等 . 超临界层流翼型优化设计策略[J]. 北京航空航天大学学报, 2017, 43(8): 1616-1624. doi: 10.13700/j.bh.1001-5965.2016.0656
引用本文: 邢宇, 罗东明, 余雄庆等 . 超临界层流翼型优化设计策略[J]. 北京航空航天大学学报, 2017, 43(8): 1616-1624. doi: 10.13700/j.bh.1001-5965.2016.0656
XING Yu, LUO Dongming, YU Xiongqinget al. Optimization strategy of supercritical laminar flow airfoil design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1616-1624. doi: 10.13700/j.bh.1001-5965.2016.0656(in Chinese)
Citation: XING Yu, LUO Dongming, YU Xiongqinget al. Optimization strategy of supercritical laminar flow airfoil design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1616-1624. doi: 10.13700/j.bh.1001-5965.2016.0656(in Chinese)

超临界层流翼型优化设计策略

doi: 10.13700/j.bh.1001-5965.2016.0656
基金项目: 

国家自然科学基金 11432007

详细信息
    作者简介:

    邢宇   男, 博士研究生。主要研究方向:飞行器多学科设计优化

    罗东明   男, 博士, 讲师, 硕士生导师。主要研究方向:飞机总体设计、计算空气动力学

    余雄庆   男, 博士, 教授, 博士生导师。主要研究方向:飞行器总体设计、飞行器多学科设计优化

    通讯作者:

    余雄庆, E-mail:yxq@nuaa.edu.cn

  • 中图分类号: V221+.3

Optimization strategy of supercritical laminar flow airfoil design

Funds: 

National Natural Science Foundation of China 11432007

More Information
  • 摘要:

    针对超临界层流翼型设计问题,提出一种两轮优化策略。采用γ-Reθt转捩模型耦合剪切应力输运(SST)模式的湍流模型对翼型边界层转捩进行预测。翼型几何参数化建模采用形状分类函数转换(CST)方法,设计变量为描述翼型几何特征的参数。第1轮优化的目的是尽量提高层流区域的比例,气动分析模型为基于Kriging模型的代理模型,优化算法为遗传算法,通过优化获得满足约束要求的层流翼型。第2轮优化目的是对第1轮优化获得的翼型进行微调,进一步提高翼型的升阻比,气动分析直接采用CFD程序,优化算法采用基于梯度的优化算法。算例表明,应用本文提出的两轮优化策略,可将超临界翼型NASA SC(2)0412优化设计成超临界层流翼型,翼型的上下表面层流区比例分别达到了55.5%和47.0%,升阻比提高了38.1%。

     

  • 图 1  转捩点位置计算与实验[20]对比

    Figure 1.  Comparison of transition position between computation and experiment[20]

    图 2  阻力系数计算与实验[20]对比

    Figure 2.  Comparison of drag coefficient between computation and experiment[20]

    图 3  超临界层流翼型优化设计流程

    Figure 3.  Optimization process of supercritical laminar flow airfoil design

    图 4  翼型NASA SC(2) 0412拟合的相对误差

    Figure 4.  Relative error for airfoil NASA SC(2) 0412 fitting

    图 5  气动分析流程

    Figure 5.  Process of aerodynamic analysis

    图 6  第1轮优化计算历程

    Figure 6.  Computational history of the first step of optimization

    图 7  初始翼型和第1轮优化后外形对比

    Figure 7.  Comparison of geometry between initial airfoil and the first step of optimization

    图 8  初始翼型和第1轮优化后压力系数分布对比

    Figure 8.  Comparison of pressure coefficient distribution between initial airfoil and the first step of optimization

    图 9  初始翼型和第1轮优化后摩擦阻力系数分布对比

    Figure 9.  Comparison of friction drag coefficient distribution between initial airfoil and the first step of optimization

    图 10  第2轮优化收敛历程

    Figure 10.  Convergence history of the second step of optimization

    图 11  第1轮和第2轮优化后翼型外形对比

    Figure 11.  Comparison of airfoil geometry between the first and second step of optimization

    图 12  第1轮和第2轮优化后压力系数分布对比

    Figure 12.  Comparison of pressure coefficient distribution between the first and second step of optimization

    图 13  第1轮和第2轮优化后摩擦阻力系数分布对比

    Figure 13.  Comparison of friction drag coefficient distribution between the first and second step of optimization

    表  1  设计变量

    Table  1.   Design variables

    变量名下限初始值上限
    b10.091 70.183 40.275 1
    b20.054 350.108 70.163 05
    b30.098 10.196 20.294 3
    b40.041 850.083 70.125 55
    b50.135 10.270 20.405 3
    b60.050 80.101 60.152 4
    b70.116 250.232 50.348 75
    ζT10.001 650.003 30.004 95
    b8-0.259 65-0.173 1-0.086 55
    b9-0.214 8-0.143 2-0.071 6
    b10-0.197 1-0.131 4-0.065 7
    b11-0.279 45-0.186 3-0.093 15
    b12-0.282 3-0.188 2-0.094 1
    b13-0.117 6-0.078 4-0.039 2
    b140.1050.210.315
    ζT2-0.003 3-0.002 2-0.001 1
    α/(°)00.30.6
    下载: 导出CSV
  • [1] SCHRAUF G.Status and perspectives of laminar flow[J].Aeronautical Journal, 2005, 109(1102):639-644. doi: 10.1017/S000192400000097X
    [2] THIBERT J J, RENEAUX J, SCHMITT V.Onera activities on drag reduction[C]//Proceedings of the 14th Congress of ICAS.Bonn:ICAS, 1990:1053-1064.
    [3] FUJINO M, YOSHIZAKI Y, KAWAMURA Y.Natural-laminar-flow airfoil development for a lightweight business jet[J].Journal of Aircraft, 2003, 40(4):609-615. doi: 10.2514/2.3145
    [4] FUJINO M.Design and development of the HondaJet[J].Journal of Aircraft, 2005, 42(3):755-764. doi: 10.2514/1.12268
    [5] BRADLEY M K, DRONEY C K.Subsonic ultra green aircraft research:Phase Ⅰ:Final report:NASA/CR-2011-216847[R].Washington, D.C.:NASA, 2011.
    [6] BRADLEY M K, DRONEY C K.Subsonic ultra green aircraft research phase Ⅱ:N+4 advanced concept development:NASA/CR-2012-217556[R].Washington, D.C.:NASA, 2012.
    [7] 乔志德.自然层流超临界翼型的设计研究[J].实验流体力学, 1998(4):23-30. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC804.003.htm

    QIAO Z D.Design of supercritical airfoils with natural laminar flow[J].Journal of Experiments in Fluid Mechanics, 1998(4):23-30(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC804.003.htm
    [8] 杨青真, 张仲寅.超临界层流机翼边界层及气动特性分析[J].航空学报, 2004, 25(5):438-442. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200405002.htm

    YANG Q Z, ZHANG Z Y.Analysis of the boundary layer and aerodynamic characteristics of a supercritical laminar wing[J].Acta Aeronautica et Astronautica Sinica, 2004, 25(5):438-442(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200405002.htm
    [9] 孙朋朋, 黄章峰.后掠角对后掠机翼边界层稳定性及转捩的影响[J].北京航空航天大学学报, 2015, 41(7):1313-1321. http://bhxb.buaa.edu.cn/CN/abstract/abstract13327.shtml

    SUN P P, HUANG Z F. Effect of sweep angle on stability and transition in swept-wing boundary layer[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7):1313-1321(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13327.shtml
    [10] 靖振荣, 孙朋朋, 黄章峰.小攻角对后掠机翼边界层稳定性及转捩的影响[J].北京航空航天大学学报, 2015, 41(11):2177-2183. http://bhxb.buaa.edu.cn/CN/abstract/abstract13580.shtml

    JING Z R, SUN P P, HUANG Z F.Effect of attack angle on stability and transition in swept-wing boundary layer[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):2177-2183(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13580.shtml
    [11] MENTER F R, LANGTRY R B, LIKKI S R, et al.A correlation-based transition model using local variables-Part Ⅰ:Model formulation[J].Journal of Turbomachinery, 2006, 128(3):413-422. doi: 10.1115/1.2184352
    [12] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal, 1994, 32(8):1598-1605. doi: 10.2514/3.12149
    [13] LANGTRY R B.A correlation based transition model using local variables for unstructured parallelized CFD codes[R].Stuttgart:Stuttgart of University, 2006.
    [14] 邓磊, 乔志德, 杨旭东, 等.高升阻比自然层流翼型多点/多目标优化设计[J].空气动力学学报, 2011, 29(3):330-335. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201103010.htm

    DENG L, QIAO Z D, YANG X D, et al.Multi-point/objective optimization design of high lift-to-drag ratio for NLF airfoils[J].Acta Aerodynamica Sinica, 2011, 29(3):330-335(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201103010.htm
    [15] HAN Z H, CHEN J, ZHU Z, et al.Aerodynamic design of transonic natural-laminar-flow (NLF) wing via surrogate-based optimization:AIAA-2016-2041[R]. Reston:AIAA, 2016.
    [16] HAN Z H, DENG J, LIU J, et al.Design of laminar supercritical airfoils based on navier-stokes equations[C]//Proceedings of 28th International Congress of the Aeronautical Sciences. Bonn:ICAS, 2012:1-9.
    [17] ZHAO K, GAO Z H, HUANG J T.Robust design of natural laminar flow supercritical airfoil by multi-objective evolution method[J].Applied Mathematics and Mechanics, 2014, 35(2):191-202. doi: 10.1007/s10483-014-1783-6
    [18] ZHANG Y F, FANG X M, CHEN H X, et al.Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J].Aerospace Science and Technology, 2015, 43:152-164. doi: 10.1016/j.ast.2015.02.024
    [19] 马晓永, 张彦军, 段卓毅, 等.自然层流机翼气动外形优化研究[J].空气动力学学报, 2015, 33(6):812-817. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201506016.htm

    MA X Y, ZHANG Y J, DUAN Z Y, et al.Study of aerodynamic shape optimization for natural laminar wing[J].Acta Aerodynamica Sinica, 2015, 33(6):812-817(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201506016.htm
    [20] BARCHE J, BINJON T W, WINTER K G, et al. Experimental data base for computer program assessment:AGARDAR-138[R].London:Technical Editing and Reproduction Ltd., 1979:1-22.
    [21] 郑宇宁, 邱志平, 黄仁, 等.二元可变后缘翼型的鲁棒优化设计[J].北京航空航天大学学报, 2015, 41(5):897-903. http://bhxb.buaa.edu.cn/CN/abstract/abstract13252.shtml

    ZHENG Y N, QIU Z P, HUANG R, et al.Robust design optimization of a two-dimensional airfoil with deformable trailing edge[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5):897-903(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13252.shtml
    [22] BOGUE D, CRIST N.CST transonic optimization using tran-air++:AIAA-2008-321[R].Reston:AIAA, 2008.
    [23] 赵童, 张宇飞, 陈海昕, 等.面向三维机翼性能的超临界翼型优化设计方法[J].中国科学:物理学力学天文学, 2015, 45(10):104708. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201510009.htm

    ZHAO T, ZHANG Y F, CHEN H X, et al.Aerodynamic optimization method of supercritical airfoil geared to the performance of swept and tapered wing[J].Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(10):104708(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201510009.htm
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  6
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-09
  • 录用日期:  2016-10-14
  • 刊出日期:  2017-08-20

目录

    /

    返回文章
    返回
    常见问答