留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间站大气环控系统应急运行策略优化

陈云鹏 庞丽萍 尹永利 李国相 王浚

陈云鹏, 庞丽萍, 尹永利, 等 . 空间站大气环控系统应急运行策略优化[J]. 北京航空航天大学学报, 2017, 43(9): 1924-1930. doi: 10.13700/j.bh.1001-5965.2016.0664
引用本文: 陈云鹏, 庞丽萍, 尹永利, 等 . 空间站大气环控系统应急运行策略优化[J]. 北京航空航天大学学报, 2017, 43(9): 1924-1930. doi: 10.13700/j.bh.1001-5965.2016.0664
CHEN Yunpeng, PANG Liping, YIN Yongli, et al. Emergency strategy operation optimization for atmosphere environment control system in space station[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1924-1930. doi: 10.13700/j.bh.1001-5965.2016.0664(in Chinese)
Citation: CHEN Yunpeng, PANG Liping, YIN Yongli, et al. Emergency strategy operation optimization for atmosphere environment control system in space station[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1924-1930. doi: 10.13700/j.bh.1001-5965.2016.0664(in Chinese)

空间站大气环控系统应急运行策略优化

doi: 10.13700/j.bh.1001-5965.2016.0664
基金项目: 

人因工程重点实验室开放基金 SYFD14005181K

详细信息
    作者简介:

    陈云鹏  男, 硕士研究生; 主要研究方向:飞行器环境控制

    庞丽萍  女, 博士, 教授, 博士生导师; 主要研究方向:载人飞行器舱室舒适性与污染控制、环控生保系统仿真技术

    通讯作者:

    庞丽萍, E-mail:pangliping@buaa.edu.cn

  • 中图分类号: V423.7;V444.3;V57

Emergency strategy operation optimization for atmosphere environment control system in space station

Funds: 

the Open Funding Project of National Key Laboratory of Human Factors Engineering SYFD14005181K

More Information
  • 摘要:

    空间站大气环控系统(ECS)由多个相互耦合的子系统组成,主要控制舱室气体成分和环境参数,对保障航天员生命安全具有重要意义。该系统正常运行严重依赖于供电系统的工作稳定性,因此长期在轨运行要求ECS应具有适应供电不足的应急运行能力。针对可能面临的供电不足情况,开展了大气ECS应急运行策略优化研究。为了研究出多约束多目标优化问题,首先建立了大气ECS物质、能量和功耗模型,并提出了非再生物资使用时长评估函数。其次以非再生物资使用时长最大和电能需求最小为目标函数,以子系统可调的运行参数为优化参数,在舱室五大环境参数的约束下,采用快速非支配排序遗传算法-Ⅱ(NSGA-Ⅱ)获得了ECS Pareto最优解集,进而获得了Pareto最优前沿(POF)。由于多目标函数具有相同重要性,最终可从POF上获得了大气ECS应急运行策略。优化研究结果表明:该方法能够确定不足电能情况下各子系统的应急电能最优分配方案,从而确定出应急时的子系统最优重构运行方案,以保证最大系统使用时长和最小电能需求的要求。

     

  • 图 1  应急运行策略优化流程

    Figure 1.  Flow of emergency operation strategy optimization

    图 2  Pareto最优解

    Figure 2.  Pareto optimal solution

    图 3  POF上的优化变量随系统总电能变化曲线

    Figure 3.  Curves of optimization variables changing with system total electric energy on POF

    图 4  4种给定电能情况下舱室主要气体成分控制结果

    Figure 4.  Results of principal gas composition control under four given electric energy conditions

    表  1  优化变量及可调范围

    Table  1.   Optimization variables and adjustable range

    变量 最小值 最大值
    wTHCS/(kg·min-1) 5 14
    ISPES/A 0 16
    wCDRA/(kg·h-1) 5 22
    下载: 导出CSV

    表  2  相关参数

    Table  2.   Related parameters

    参数 数值
    舱室体积/m3 100
    氧气存储质量/kg 9.762
    氧气罐个数 2
    LiOH质量/kg 12
    LiOH罐个数 2
    供氧速率/(L·min-1) 40
    供氮速率/(L·min-1) 40
    下载: 导出CSV

    表  3  人体热湿实验数据

    Table  3.   Experimental data of human body heat and humidity

    热湿参数 睡眠 静息 轻度 中度
    耗氧消耗量/(kg·d-1) 0.468 0.571 2 0.823 2 1.545 6
    CO2消耗量/(kg·d-1) 0.528 0.648 0.936 1.752
    产热/W 83 93 150 280
    排湿/(kg·d-1) 1.2 1.44 1.92 3.72
    下载: 导出CSV

    表  4  4种给定电能情况下系统运行策略最优重构方案

    Table  4.   Optimal reconfiguration scheme of system operation strategy under given electric energy

    应急工况 Lsys/
    d
    Wsys/
    W
    wCDRA/
    (kg·h-1)
    ISPES/
    A
    wTHCS/
    (kg·min-1)
    A 199 1 164 8.60 12.95 7.80
    B 79 1 123 8.34 12.05 7.92
    C 26 950 6.07 8.89 7.41
    D 9 774 5.16 0.32 6.68
    下载: 导出CSV
  • [1] LARSON W J, PRANKE L K.Human spaceflight:Mission analysis and design[M].Columbus:McGraw-Hill, 2007:539-574.
    [2] WIELAND P O.Living together in space:The design and operation of the life support systems on the international space station[M].Huntsville, AL:National Aeronautics and Space Administration, Marshall Space Flight Center, 1998:120-156.
    [3] ROMANI R, GOES L C S.Cabin temperature control model for commercial aircraft[C]//Proceedings of AIAA Modeling and Simulation Technologies Conference.Reston:AIAA, 2012:1-15.
    [4] 靳健, 侯永青.载人航天器空气环境参数控制非定常仿真分析[J].航空学报, 2014, 35(11):2970-2978. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201411008.htm

    JIN J, HOU Y Q.Unsteady simulation analysis on air environment parameters control of manned spacecraft[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2970-2978(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201411008.htm
    [5] ANDERSON G, MARTIN C E.Evaluation and application of Apollo ECLS/ATCS systems to future manned missions[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit.Reston:AIAA, 2005:1-13.
    [6] HAJELA G, COHEN F, DALTON P.International space station power reinitialization[J].IEEE Aerospace and Electronic Systems Magazine, 2003, 18(4):19-24. doi: 10.1109/MAES.2003.1194085
    [7] MAK T.A study of on-orbit spacecraft failures[J].Acta Astronautica, 2009, 64(2):195-205. http://www.sciencedirect.com/science/article/pii/S0094576508003019
    [8] KIM S Y, CASTET J F, SALAH J H.Spacecraft electrical power subsystem:Failure behavior, reliability, and multi-state failure analyses[J].Reliability Engineering and System Safety, 2012, 98:55-65. doi: 10.1016/j.ress.2011.10.005
    [9] 孙晨, 徐向华, 梁新刚.空间站主动热控回路的热负荷分配优化[J].工程热物理学报, 2014, 35(10):2049-2052. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201410035.htm

    SUN C, XU X H, LIANG X G.Heat load distribution optimization of active thermal control system for space station[J].Journal of Engineering Thermophysics, 2014, 35(10):2049-2052(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201410035.htm
    [10] LIN K P, LUO Y Z, TANG G J.Optimization of logistics strategies for long-duration space-station operation[J].Journal of Spacecraft And Rockets, 2014, 51(5):1709-1720. doi: 10.2514/1.A32773
    [11] 任建勋, 张信荣, 尚传勋, 等.载人航天器SPE制氧系统性能分析[J].清华大学学报(自然科学版), 2002, 42(8):1102-1105. http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200208028.htm

    REN J X, ZHANG X R, SHANG C X, et al.Performance analysis of SPE oxygen generation system in manned spacecraft[J].Journal of Tsinghua University(Natural Science Edition), 2002, 42(8):1102-1105(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200208028.htm
    [12] LIU M, YANG D, PANG L, et al.Experimental and computational investigation of adsorption performance of TC-5A and PSA-5A for manned spacecraft[J].Chinese Journal of Aeronautics, 2015, 28(6):1583-1592. doi: 10.1016/j.cja.2015.08.003
    [13] DEB K, PRATAP A, AGARWAL S, et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. doi: 10.1109/4235.996017
    [14] ARIAS-MONTA A, COELLO C A C, MEZURA-MONTES E.Multiobjective evolutionary algorithms in aeronautical and aerospace engineering[J].IEEE Transactions on Evolutionary Computation, 2012, 16(5):662-694. doi: 10.1109/TEVC.2011.2169968
    [15] DEB K.An efficient constraint-handling method for genetic algorithms[J].Computer Methods in Applied Mechanics & Engineering, 2000, 186(2-4):311-338. http://www.sciencedirect.com/science/article/pii/S0045782599003898
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  429
  • HTML全文浏览量:  2
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-17
  • 录用日期:  2016-12-30
  • 刊出日期:  2017-09-20

目录

    /

    返回文章
    返回
    常见问答