留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于新型C4D的小管道气液两相流流型辨识方法

盛碧霞 冀海峰 王保良 黄志尧 李海青

盛碧霞, 冀海峰, 王保良, 等 . 基于新型C4D的小管道气液两相流流型辨识方法[J]. 北京航空航天大学学报, 2017, 43(11): 2273-2279. doi: 10.13700/j.bh.1001-5965.2017.0063
引用本文: 盛碧霞, 冀海峰, 王保良, 等 . 基于新型C4D的小管道气液两相流流型辨识方法[J]. 北京航空航天大学学报, 2017, 43(11): 2273-2279. doi: 10.13700/j.bh.1001-5965.2017.0063
SHENG Bixia, JI Haifeng, WANG Baoliang, et al. Flow pattern identification method of gas-liquid two-phase flow in ductule based on new C4D[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2273-2279. doi: 10.13700/j.bh.1001-5965.2017.0063(in Chinese)
Citation: SHENG Bixia, JI Haifeng, WANG Baoliang, et al. Flow pattern identification method of gas-liquid two-phase flow in ductule based on new C4D[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2273-2279. doi: 10.13700/j.bh.1001-5965.2017.0063(in Chinese)

基于新型C4D的小管道气液两相流流型辨识方法

doi: 10.13700/j.bh.1001-5965.2017.0063
基金项目: 

国家自然科学基金 51476139

国家自然科学基金 61573312

详细信息
    作者简介:

    盛碧霞  女, 硕士研究生。主要研究方向:检测技术与自动化装置

    冀海峰  男, 博士, 副教授, 硕士生导师。主要研究方向:检测技术与自动化装置

    通讯作者:

    冀海峰, E-mail:hfji@iipc.zju.edu.cn

  • 中图分类号: TP212

Flow pattern identification method of gas-liquid two-phase flow in ductule based on new C4D

Funds: 

National Natural Science Foundation of China 51476139

National Natural Science Foundation of China 61573312

More Information
  • 摘要:

    基于径向结构的电容耦合式非接触电阻抗检测传感器,结合小波包分析技术和K-均值聚类算法,提出一种小管道气液两相流流型辨识方法。首先,利用径向结构的电容耦合式非接触电阻抗检测传感器,获取反映被测流体信息的电阻抗测量信号实部信息和虚部信息。然后,采用小波包分解的信号处理技术将实部信息和虚部信息分别分为4个频率段,提取不同频率范围的能量分布情况,并与各自的均值、方差构成特征向量。最后,利用K-均值聚类算法进行模式分类,建立流型辨识模型。在内径为3.5 mm和5.5 mm的玻璃管道内进行验证实验,实验结果表明,所获得的传感器测量信号能反映流体流动信息,提出的流型辨识技术路线是有效的,流型辨识精度可达88%以上。

     

  • 图 1  技术路线框图

    Figure 1.  Block diagram of technical route

    图 2  小波包分解示意图

    Figure 2.  Schematic of wavelet packet decomposition

    图 3  基于串联电感的新型C4D传感器结构示意图

    Figure 3.  Schematic of structure of new C4D sensor based on series resonance

    图 4  基于串联电感的新型C4D传感器等效电路图

    Figure 4.  Equivalent circuit of new C4D sensor based on series resonance

    图 5  气液两相流流体流动图

    Figure 5.  Fluid flow images of gas-liquid two-phase flow

    图 6  各流型下对应的电阻抗测量信号

    Figure 6.  Electrical impedance measurement signal corresponding to different flow patterns

    图 7  泡状流对应的原始信号及各频率段幅值

    Figure 7.  Original signal and frequency band amplitude corresponding to bubble flow

    图 8  段塞流对应的原始信号及各频率段幅值

    Figure 8.  Original signal and frequency band amplitude corresponding to slug flow

    图 9  层状流对应的原始信号及各频率段幅值

    Figure 9.  Original signal and frequency band amplitude corresponding to laminar flow

    表  1  传感器结构参数

    Table  1.   Parameters of sensor structure

    管道d/mmD/mml/mmθ/(°)
    管道13.55.718.5120
    管道25.57.5111.0120
    下载: 导出CSV

    表  2  基于电阻抗幅值测量信号的内径为3.5 mm管道中两相流流型辨识结果

    Table  2.   Flow pattern identification results of two-phase flow in pipe with inner diameter of 3.5 mm based on electrical impedance amplitude measurement signal

    流型样本总数正确辨识个数准确率/%
    泡状流333091
    层状流332885
    段塞流333091
    下载: 导出CSV

    表  3  基于电阻抗幅值测量信号的内径为5.5 mm管道中两相流流型辨识结果

    Table  3.   Flow pattern identification results of two-phase flow in pipe with inner diameter of 5.5 mm based on electrical impedance amplitude measurement signal

    流型样本总数正确辨识个数准确率/%
    泡状流565191
    层状流564580
    段塞流565293
    下载: 导出CSV

    表  4  基于实部信息和虚部信息的内径为3.5 mm管道中两相流流型辨识结果

    Table  4.   Flow pattern identification results of two-phase flow in pipe with inner diameter of 3.5 mm based on real part and imaginary part

    流型样本总数正确辨识个数准确率/%
    泡状流333091
    层状流332988
    段塞流333091
    下载: 导出CSV

    表  5  基于实部信息和虚部信息的内径为5.5 mm管道中两相流流型辨识结果

    Table  5.   Flow pattern identification results of two-phase flow in pipe with inner diameter of 5.5 mm based on real part and imaginary part

    流型样本总数正确辨识个数准确率/%
    泡状流565191
    层状流565191
    段塞流565293
    下载: 导出CSV
  • [1] 陈光文, 袁权.微化工技术[J].化工学报, 2003, 54(4):427-439. http://d.wanfangdata.com.cn/Periodical/hgxb200304004

    CHEN G W, YUAN Q.Micro-chemical technology[J].Journal of Chemical Industry and Engineering, 2003, 54(4):427-439(in Chinese). http://d.wanfangdata.com.cn/Periodical/hgxb200304004
    [2] 袁振伟. 不同重力条件下冷凝器换热特性研究[D]. 南京: 南京航空航天大学, 2010: 1-3.

    YUAN Z W.Research on heat transfer characteristics of condensers under various gravity condition[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:1-3(in Chinese).
    [3] GAVRⅡLIDIS A, ANGELI P, CAO E, et al.Technology and applications of microengineered reactors[J].Chemical Engineering Research and Design, 2002, 80(A1):3-30. http://www.sciencedirect.com/science/article/pii/S0263876202721473
    [4] KUBAN P, HAUSER P C.Capacitively coupled contactless conductivity detection for microseparation techniques-recent developments[J].Electrophoresis, 2011, 32(1):30-42. doi: 10.1002/elps.201000354
    [5] OPEKAR F, TUMA P, STULIK K.Contactless impedance sensors and their application to flow measurements[J].Sensors, 2013, 13(3):2786-2801. doi: 10.3390/s130302786
    [6] ZUBER N, FINDLAY J A.Average volumetric concentration in two-phase flow systems[J].American Society of Mechanical Engineers, 1965, 87(4):453-468. http://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=1433615
    [7] WANG L, HUANG Z Y, WANG B L, et al.Flow-pattern identification of gas-liquid two-phase flow based on capacitively coupled contactless conductivity detection[J].IEEE Transactions on Instrumentation and Measurement, 2012, 61(5):1466-1475. doi: 10.1109/TIM.2012.2183433
    [8] TEWFIK A H, SINHA D, JORGENSEN P.On the optimal choice of a wavelet for signal representation[J].IEEE Transactions on Information Theory, 1992, 38(2):747-765. doi: 10.1109/18.119734
    [9] 唐向宏.时频分析与小波变换[M].北京:科学出版社, 2008:221-235.

    TANG X H.The time-frequency analysis and wavelet transform[M].Beijing:Science Press, 2008:221-235(in Chinese).
    [10] 张静远.基于小波变换的特征提取方法分析[J].信号处理, 2000, 16(2):156-162. http://d.wanfangdata.com.cn/Periodical/xhcl200002012

    ZHANG J Y.Analyses of feature extraction methods based on wavelet transform[J].Signal Processing, 2000, 16(2):156-162(in Chinese). http://d.wanfangdata.com.cn/Periodical/xhcl200002012
    [11] TAITEL Y, DUKLER A E.A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J].Chemical Engineering Journal, 1976, 22(1):882-890. doi: 10.1002/aic.690220105/full?scrollTo=references
    [12] 冀海峰. 小波分析技术在两相流检测中的应用研究[D]. 杭州: 浙江大学, 2002: 29-31. http://cdmd.cnki.com.cn/Article/CDMD-10335-2003051230.htm

    JI H F.Applications of wavelet analysis to the measurement of two-phase flow[D].Hangzhou:Zhejiang University, 2002:29-31(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10335-2003051230.htm
    [13] MALLAT S G.A theory for multiresolution signal decomposition:The wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693. doi: 10.1109/34.192463
    [14] DAUBECHINES I, LAGARIAS J C.Two-scale difference equations I:Existence and global regularity of solutions[J].SIAM Journal on Mathematical Analysis, 1991, 22(5):1388-1410. doi: 10.1137/0522089
    [15] 黄韬, 刘胜辉, 谭艳娜.基于K-means聚类算法的研究[J].计算机技术与发展, 2011, 21(7):54-62. http://d.wanfangdata.com.cn/Periodical/gdyjs201209043

    HUANG T, LIU S H, TAN Y N.Reaearch of clustering algorithm based on K-maens[J].Computer Technology and Development, 2011, 21(7):54-62(in Chinese). http://d.wanfangdata.com.cn/Periodical/gdyjs201209043
    [16] 李金宗.模式识别导论[M].北京:高等教育出版社, 1994:316-321.

    LI J Z.An introduction to pattern recognition[M].Beijing:Higher Education Press, 1994:316-321(in Chinese).
    [17] LEELA V, PRIYA K S, MANIKANDANR A.Comparative analysis between K-means and Y-means algorithms in Fisher's Iris data sets[J].International Journal of Engineering Science and Technology, 2013, 5(2):245-249.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  398
  • HTML全文浏览量:  4
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-15
  • 录用日期:  2017-06-30
  • 刊出日期:  2017-11-20

目录

    /

    返回文章
    返回
    常见问答